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Abstract

Using convolutional neural networks, we present a novel method for predicting
turbulent fluid flow through an array of obstacles in this thesis. In recent years,
machine learninghas exploded in popularity due to its ability to create accurate data-
drivenmodels and the abundance of available data. In an attempt to understand the
characteristics of turbulent fluid flow, we utilise a novel convolutional autoencoder
neural network to predict the first ten PODmodes of turbulent fluid flow. We find
that the model is able to predict the first two PODmodes well although and with
less accuracy for the remaining eight POD modes. In addition, we find that the
ML-predicted PODmodes are accurate enough to be used to reconstruct turbulent
flow that adequately captures the large-scale details of the original simulation.
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1Introduction

„The test of science is its ability to predict.

— Richard Feynman
(Theoretical physicist)

Fluid flow is all around us. It is there when the clouds drift along the sky. It is there
when the tides of the sea batter the beaches, and it is there when rockets launch for
the stars, fluid flow exists all around us. Fluid dynamics, the study of fluid flow, is
crucial to many industries and has contributed significantly to the advancement of
human technology. There are still a lot of significant applications today that call for
a deeper comprehension of fluid dynamics. According to the 2001 UK national fluid
dynamics report by the UK Fluids Network [30], fluid dynamics is a £13.9 billion
industry in the UK, employing 45,000 people across 2,300 businesses. If we include
businesses that use fluid dynamics, this figure rises considerably to £200 billion
and employs over 500,000 people, demonstrating how beneficial and important the
discipline of fluid dynamics is to industry and the economy.

The fluid flow around high-rise buildings is an example of the usage of fluid dy-
namics for industrial purposes. Civil engineers must understand how the air flows
around their buildings since the airflow can cause the building to wobble and suffer
from resonance. When air flows past a single or a group of high-rise structures, the
fluid flow’s wake can leave behind a pattern of vortices shed from the building or
buildings. This is known as the von Karman vortex street, and the pressure sur-
rounding the structure can cause an oscillating force to be applied to the building.
To minimise resonance, civil engineers must design their structures so that the
natural frequency of the structure does not match the forcing frequency of the
airflow. As seen in figure 1.1, the Burj Khalifa is a notable illustration of this, since
the designers purposefully adjusted the cross-section of the building and tapered it
such that the shape and size of the cross-sectional area changes as the skyscraper
rises. Tapering the building permits the vortex shedding frequencies to alternate,
disrupting the development of vortices in the wake of the fluid flow [1].

The von Karman vortex street is well seen in figure 1.2 where the terrain of the Juan
Fernandez Islands is slowing the wind and forcing it to flow around the islands, so
forming a series of alternating and oscillating regions of clear sky within a sea of
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Fig. 1.1.: The Burj Khalifa. Based on the Hymenocallis Flower, the Burj Khalifa has three
’wings’ which surface area progressively gets smaller as the building gets higher.
As the cross-section of the building changes, this affects the wind flow and
disrupts resonance from occurring. Picture taken by Shahin Ghanbari.
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Fig. 1.2.: Picture taken by Landsat 7 shows the clouds off the coast of Chile, near the
Juan Fernandez Islands (commonly known as the Robinson Crusoe Islands), on
September 15, 1999. Here the von Karman vortex street is clearly seen.
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Fig. 1.3.: The energy cascade. k is the wavenumber and E(k) represents the energy of the
wake.

clouds. As each region of clear sky gets farther and further away, thewakes dissipate
steadily into entropy. This figure illustrates the energy cascade, one of the primary
pillars of turbulence. (sometimes called the Richardson-Kolmogorov cascade). The
energy cascade is beautifully described in this poem by Richardson.

"Big Whirls have little whirls,
that feed on their velocity;
and little whirls and lesser whirls,
and so on to viscosity."
- Lewis Fry Richardson

The energy cascade describes the energy transfer between larger and smaller wakes.
As each wake fragments into smaller wakes, its energy follows the energy cascade,
as seen in Figure 1.3. At inertial subranges, the effect of dissipation is extremely
weak, so wake disintegration is caused by vortex stretching. As eachwake dissipates
into ever-smaller wakes, the effect of dissipation eventually increases until the wake
is so small that it dissipates into entropy. One key result was derived by Onsager
[52] [12] which found that the energy cascade flows down in the power of −5/3.
Onsager’s work was built on Ricardson’s description of the energy cascade and
Kolmogorov’s [32] derivation the power-law forms describing the energy cascade
in 1941.

An additional lesson we can learn from this figure is the self-similarity effect. A
object that looks roughly the same at any length scale is said to be self-similar.
We observe these effects on larger scales, such as galaxies as seen in figure 1.5,
and smaller scales, such as the flow of small streams as seen in figure 1.6. This
self-similarity effect is prevalent in turbulent fluid flow, but it can be observed in
other parts of nature as well such as coastlines of a country or how the branches of
a tree branch out. As one looks at the tree as seen in figure 1.7, and gradually zoom

4



Fig. 1.4.: Observed self-similarity in turbulent fluid flow. The image on the left is the
original image, while the image on the right has been magnified, as shown
in the image in the middle.

Fig. 1.5.: This image captured by the
Hubble Space Telescope
depicts Sh 2-106. A
newly-formed star known as
S106 IR is responsible for the
hourglass-shaped gas cloud
and the visible turbulence
within.

Fig. 1.6.: The Lenaelva River in Norway,
near Skrei. It is rotated to
form a parallel with figure 1.5.
The river’s water is falling
over a waterfall and causing
turbulence. This type of
pattern seems to occur
everywhere in nature.

closer into the branches, the level of detail increases, replicating the features seen
at larger scales. We call these structures fractals, a term coined by Mandelbrot in
1975 [44].

Fractals are characterised, in part, by the fractal dimension, as described in ap-
pendix ??, and the fractal dimension exhibits a power law distribution, the same as
the energy cascade. The scale invariance of the power law distribution is useful
for modelling turbulent fluid flow [13] as turbulence tends to be scale invariance
as well. Due to this, fractals has played a role in producing models describing
the fragmentation of larger wakes to smaller wakes such as the β model or the
multifractal model [16].

Everywhere we look in nature, we tend to see fractals everywhere. Yet, man-made
objects do not tend to be fractals, and the flow around these objects is frequently
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Fig. 1.7.: Fractals seen in nature. Notice how each branch looks similar to each sub-branch
and that each progressive layer contains more similar detail.

examined in detail. What is intriguing, however, are the turbulent flow through
fractal geometries. Marlow, Brevis, and Nicolleau [45], as well as Higham and Vaid-
heswaran [27], studied the effect of turbulent wakes generated by the flow through
fractal multi-scale structures. Marlow et al. experimentally examined turbulent
flows through three-dimensional, multi-scale porous obstacles, specifically the flow
through the Sierpinski carpet as seen in figure 1.8, and discovered a significant
deviation from Kolmogorov’s−5/3 power law. They performed a power spectrum
density analysis on the data and discovered that the flows through the Sierpinski
carpet obstacles instead followed a −2 or −7/3 power law. Similar results have
been reported earlier such as the work by Mazellier and Vassilicos [46]. The impo-
sition of boundary conditions in a particular configuration appears to transform
Kolmogorov’s−5/3 law into either a−2 or−7/3 power law.

Concerning the geometric structure of an obstacle undergoing turbulent fluid flow,
there are two key questions. Which geometries exhibit these behaviours and why
is this the case? How can we parameterize these geometries so that they can be
utilised in mathematical analysis?

Marlow et al. attempted to quantify the fractal geometric structure using four
unique geometric parameters. The first geometric geometric parameter is the void
fraction ϕ which is defined as
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Fig. 1.8.: The Sierpinski carpet after three iterations. A well-known fractal shape in which
eight small squares are placed around each large square at each iteration. Each
smaller square is a third the size of its larger counterpart. Following each itera-
tion, eight smaller squares are placed around each small square, and this process
is repeated onto infinity.

ϕ =
Volume of voids in the structure

Total volume
(1.1)

which represents the porosity of the structure. These measurements may only
have secondary roles for analysing turbulent fluid flow as they only parameterise
the fractal structures and have no correlation with fluid dynamics at this time.
Intuitively, these measurements could be relevant when the flow between obstacles
is of interest. The frontal surface area, total perimeter, total number of edges, and
many other methods of measuring the fractal structure may also be applicable
measures for turbulent fluid flow.

This complicates the investigation of these non-equilibrium turbulent flows. Al-
though there are numerous known fractal structures that can be analysed, there
are an infinite number of ways in how these structures can be arranged. These
additional complexity poses significant new modelling challenges for these flows.
While efforts are concentrated in multiple areas, we propose developing a neural
network based on Deep Learning that can understand the structure’s geometric
data and predict turbulence.

In recent years, the expansion of data has been pervasive across all scientific and
commercial fields, and as a result, the use of machine learning has become in-
creasingly popular [9]. Machine learning is a subfield of artificial intelligence that
focuses on the creation of models and algorithms that can create approximate
predictive functions from data [61]. And a popular subset of Machine learning is
Deep Learning, which has become the poster child of machine learning methods.
Deep learning is gaining popularity due to the accuracy of the predictions and the
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simplicity of the model. Deep learning models consist of a series of ’layers’ that,
individually, can learn simple relationships but, collectively, can learn complex
relationships.

Traditionally, fluid dynamics has generated an abundance of data, either from
experiments, field measurements or simulations. This synergy between fluid dy-
namics and machine learning has motivated researchers to tackle challenges in
fluid dynamics using machine learning models and applying them to situations
such as turbulence closure modelling, reduced-order modelling, or accelerating
computational fluid dynamic (CFD) simulations.

One such example is the work by Ling et al. (2016) [42] who used a multilayer pre-
ception (MLP) network, a type of deep neural network, tomodel the Reynolds stress
anisotropy tensor used in Reynolds-averaged Navier-Stokes (RANS) simulations.
The aim is to augment the use of the turbulence models in RANS simulations and
they found that their model made significant improvement to the simulation com-
pared to linear eddy viscosity and nonlinear eddy viscosity models. Miyanawala
and Jaimana (2017), [49] presents an efficient method for model reduction of the
Navier-Stokes equations for unsteady flow problems using deep learning. They
show the predictive ability of the model they trained, which predicts the force
coefficients for a set of bluff bodies and determined the predicts with a maximum
relative error of less than 5% whilst being faster than conventional methods by
almost an order of four magnitudes.

An interesting application of machine learning in fluid dynamics is the work by
Guo et al. [22]. Using a convolutional neural network, Guo et al. predicted the
steady flow past a series of regular and irregular shaped bluff bodies. They showed
that the model predicted the laminar flow around the bodies with a high accuracy
whilst achieving a 2-4 orders of magnitude speed up compared to traditional CFD
methods. Although Guo et al.’s work was for steady flow, this result motivated us to
develop a similar model but capable of predicting certain features of the turbulent
flow instead.

Anotherworkwith convolutional neural networks is byMurata et al. [murata_fukami_fukagata_2020]
who showed that a Convolutional autoencoder can be used to decompose flow fields
into more efficient nonlinear mode decompositions that has lower L2 reconstruc-
tion losses compared to traditional methods like POD. They used a convolutional
neural network with 28 layers and 10,000 samples for the dataset, and showed that
convolutional neural networks has the potential to be used for developing more
efficient methods of controlling flows.
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Convolutional autoencoders can only produce a snapshot of the velocity field, hence
their work on predicting steady flow. We wish to understand how information
concerning the geometric arrangements of obstacles affect turbulent flows. As
turbulence is transient and the convolutional autoencoder produces a snapshot,
we plan to devote our efforts to build a model to predict the proper orthogonal de-
composition (POD) modes of turbulence from a series of still snapshots containing
the geometric information of the obstacles. It is then possible to recreate recreate
a surrogate flow which capture some key features of the turbulent flow around an
object given a series of PODmodes as shown by Baldi and Hornik (1989) [3].

The application potential of this model is vast. In addition to assisting us in com-
prehending how a particular arrangement of obstacles modifies the fundamental
pillars of turbulence, it enables us to rapidly examine turbulent flow past a variety
of geometries and predict the flow characteristics. If this model replicates the
increase of speed up by 2-4 magnitudes like Guo et al.’s model, the computational
resources and time intensity of the work will be drastically reduced.

We intend to create this model by first creating the dataset using CFD and then
determining the POD modes of the dataset. Due to its efficiency and speed, simula-
tions will be conducted using the Lattice Boltzmann method (LBM), and the POD
modes will be calculated using singular value decomposition (SVD).

The geometric information of the obstacles in each simulationwill be parameterised
and stored in a separate dataset. After generating the two datasets, we train the
model to learn the mapping between the geometry and the POD modes of the
turbulent fluid flow.

1.1 Outline

The outline for this thesis are as follows,

• In chapter 2, the basics of machine learning and convolutional autoencoders
will be discussed. We will discuss how these models work, to provide back-
ground information to the predictive model.

• In chapter 3, the foundations of the Lattice Boltzmann method will be dis-
cussed. The quality of the prediction of the model is dependent on the quality
of the simulations used to produce them so understanding the methods un-
derpinning the simulation is important.
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• In chapter 4, we discuss how the PODmodes are calculated and how they can
be used to characterise the structures of the turbulent fluid flow with some
examples.

• In chapter 5, we will discuss how we combined all these methods to produce
our predictive model and discuss the results of the model produced.

• Finally in chapter 6, we will conclude this thesis.
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2Machine Learning in Fluid
Dynamics

„People worry that computers will get too smart
and take over the world, but the real problem is
that they’re too stupid and they’ve already taken
over the world.

— Pedro Domingos
(Professor Emeritus of Computer Science and
Engineering at the University of Washington)

2.1 Introduction

In 2015, the Go world champion Lee Sedol was defeated in a thrilling five-game
series by the computer programme AlphaGo, 4-1. Due to the complexity of the
game at the time, it was widely believed that machine learning models could not
yet defeat humans in a game of Go. Unlike previous older computer programs
such as Deep Blue, which beat the World Chess Champion Garry Kasparov in 1997,
AlphaGo is different in that it did not solely use a brute force method to search
for the most optimal move as Deep Blue did1. Instead, the distinction between
AlphaGo and Deep Blue was that AlphaGo calculated the probability of optimal
moves and ignored losing ones in its search algorithm. This enabled AlphaGo to
reduce the complexity of its search algorithm and concentrate its limited computa-
tional resources on determining the optimal move. This distinction in approach
is notable. It may be computationally costly to use brute-force methods to obtain
direct results, depending on the task at hand; therefore, it may be pragmatic to use
an approach that approximates the ideal solution. Deep learning enables the model
to understand the representation of the data as opposed to memorising the data,
enabling it to make much more accurate predictions than other machine learning
techniques.

1Deep blue used an Alpha-beta pruning search algorithm. The algorithm attempts to maximise a
predefined score while disregarding moves that result in a lower score. Due to the fact that Chess is
not a solved problem, i.e there is no ’ideal game’, the algorithm used is a deterministic method for
determining the optimal moves.
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Deep learning’s success is a result of the continued growth of computing power
and the abundance of large datasets. There are three main sub-branches to deep
learning, supervised learning, unsupervised learning and reinforcement learning.
Supervised learning consists of algorithms used to train a model given a known
input and output. Unsupervised learning consists of algorithms that do not require
an output dataset, and instead obtain useful results such as the Principal component
analysis (PCA) components or clusters using the K-means clustering algorithm. The
majority of machine learning applications are founded on supervised learning.

Deep neural networks (DNN) can be seen as amodelwith typically a large number of
parameterswhich takes some input and approximates the output. These parameters
are built using a series of ’artificial neurons’which individually aims to solve a simple
equation,

y⃗ = σ(ω⃗x⃗+ b⃗), (2.1)

where x⃗ and y⃗ represents the input and output respectively, ω represents the weight,
b represents the bias of the neuron and σ represents the activation function. The
activation function is typically a non-linear function. Each individual artificial
neuron can be stacked into a ’layer’ which acts as

y⃗i = σ
∑

(ω⃗x⃗ij + b⃗j). (2.2)

Each layer can be stacked on top of each other to form a series of layers and given
a DNN a sufficient number of layers and sufficient number of artificial neurons
per layer, it can be shown via the the universal approximation theorem that it is
possible to construct a neural network that can predict a given function if a DNN
has a sufficient number of layers of artificial neurons or if the width of the layer is
sufficiently large [26]. This is the strength of Deep Learning and this strength has
contributed to Deep learning’s recent popularity.

However, there are two substantial disadvantages. The first is that the universal
approximation theorem does not instruct how to construct an ideal neural network
so there is no information regarding the optimal method for determining these
parameters. A second weakness is the curse of dimensionality. Richard Bellman
[4] coined the term "curse of dimensionality" to describe the difficulty of using a
brute-force algorithm to optimise a function with many variables. Due to the curse
of dimensionality, as the number of required dimensions increases, so does the
amount of training data required, as the data becomesmore "sparse" as the number
of required dimensions increases. Therefore, caution is required when developing
a predictive deep learning model, as the sparsity of the dataset may prevent the
model from training.
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Previously, we contrasted the deterministic approach of the Deep Blue program
with the probabilistic approach of AlphaGo. These approaches can also be viewed
through the lens of computational fluid dynamics. CFD simulations are used to
model turbulent fluid flow, with Direct Numerical Simulation (DNS) being the most
accurate method. These simulations are computationally intensive because they
must predict the movement of the fluid at all scales, including the smallest which
inevitably means that the resolution of the simulation has to be dense. This is
comparable to the deterministic brute force algorithmmentioned earlier.

In contrast, one can approach this problem though the probabilistic point of view.

Here, machine learning models can play an important role. Typically, a disadvan-
tage of machine learningmethods is that they are data-driven and therefore require
an abundance of data to produce accurate models. In the case of fluid dynamics,
however, this limitation is neglected by the abundance of available simulation and
experimental data. As shown by a review paper by Brunton et al. (2020) [9], machine
learning is currently being used to solve many problems in CFD such as solving the
closure problem in Reynolds-averaged Navier-Stokes equations by predicting the
Reynolds stress [37]. As a result, we can approach this from a probabilistic point of
view.

Application of deep learning techniques to CFD appears promising. DeepMind’s
work (Ravuri et al.) [55] is an example of the use of deep learning models in the
context of fluid dynamics. Due to the computational costs required to simulate high
quality simulations in real time, conventional near time precipitation nowcasting
simulations cannot predict immediate and near future precipitation accurately in
real time.

Using convolutional neural networks, Guo et al. [22] demonstrated that it was
possible to reproduce the steady laminar flow field around buff bodies. Their
models produced the results of streamwise velocity component and transverse
velocity component separately, which they later combined to produce the final
result. They introduced the use of the signed distance function (SDF) to characterise
the geometry in the context of fluid dynamics, the use of the encoder to analyse the
geometry, and the use of the decoder to understand the encoded data and predict
the steady flow. We explain in more detail about the SDF in subsection ?? and the
encoder and decoder in subsection 2.3.

They experimented with two model architectures, a ’shared’ encoder model which
used one encoder to produce a encoding that is used to predict both the streamwise
and transverse velocity components, and a ’separate’ encoder model where two
models were used to independently predict either the streamwise or transverse
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velocity components without using the same encoder. The twomodels were trained
on two separate datasets, containing either 100,000 samples of five unique 2D prim-
itives: triangles, quadrilaterals, pentagons, hexagons and dodecagons, or a 2D
dataset containing car geometries and airfoils. The number of samples for the 2D
dataset containing car geometries and airfoils is not known.

The accuracy of the models varied. Using a root mean relative squared error to
calculate the error across the entire velocity field, defined as

errn(i, j) =

√
(vxij − v̂xij)

2 + (vyij − v̂yij)
2√

(vxij)
2 + (vyij)

2
, (2.3)

where vxij and v
y
ij represents the velocity values at each pixel, and v̂xij and v̂

y
ij repre-

sents the predicted velocity values at each pixel. The accuracy varied from 1.76%
to 3.08% for the dataset containing primitive shapes, and 9.04% to 16.53% for the
2d dataset containing car geometries and airfoils. Their method allows for the
prediction of fluid flow given a certain shape and gives a speed increase of three to
four orders compared to CFD simulation. Guo et al. showed that the use of the SDF
to represent the geometry compared to binary reduced the error significantly, with
an error reduction of 80.71% to 3.08% being the most drastic difference. The reason
behind the increase in effectiveness of the SDF is that the SDF representation con-
tains global geometric information, compared to the binary representation which
only contains local geometric information.

Bhatnagar et al. [7] also had a similar idea in creating an CNN model but were
interested in creating a model that could predict velocity flow fields and pressure
field given varying airfoil shapes, Reynolds numbers and angles of attack. They
used four different high Reynolds numbers, three unique airfoils and twenty-one
different angle of attacks and also adopted a similarmodel architecture to Guo et al.,
using a SDF for the input, an encoder to interpret the SDF and decoder to decode
the output into the velocity or pressure field. Their dataset contained 252 samples
which contained the results of the RANS simulations conducted for the work. A
noteworthy experiment conducted by Bhatnagar et al. is that they used a shared
encoder shared decoder architecture, rather than the shared encoder separate
decoder and separate encoder separate decoder architecture experimented by Guo
et al. They showed that the shared decoder architecture performed better compared
to the separate decoder architecture, where the MAPE error reduces by more than
10%, from 24.97% to 14.82% for the pressure field error in the wake region of the
flow field. They noticed that their results varied depending on the region of the
flow field with the model struggling with predicting the wake region as accurately
compared to the rest of the flow field. Overall they report an MSE of less than
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0.1 over the entire flowfield for all their predictions. Like before, Bhatnagar et al.
reports a speed up of a magnitude of 4 orders compared to using a RANS solver.

In this chapter, we will discuss the the fundamentals of deep learning and the
different architectures of deep learning thatmay be applicable to ourmodel. Finally,
we will describe the basics of the encoder and decoder of the convolutional neural
network.

2.2 Deep learning basics

As stated previously, the goal of deep learning models is to estimate the mapping
between an input x⃗ and an output y⃗ using a series of artificial neurons. There are
other models for deep learning, but we will begin with the feedforward neural
network (FNN) because its architecture is straightforward and provides a solid
foundation for understanding other neural networks. Later in this chapter, the
convolutional neural network will be described in detail.

2.2.1 Feedforward Networks (FNN) overview

The FNN employs a network of artificial neurons arranged in layers called fully
connected layers. Each neuron utilises the equation,

z⃗ = ω⃗x⃗+ b⃗, y⃗ = σ(z⃗). (2.4)

where ω⃗ represents the weight, b⃗ represents the bias and σ represents a non-linear
function. The weight ω⃗ and bias b⃗ are referred to as the parameters of a neuron. The
intermediate term z is the output of the neuron without the activation function and
performs a unique role in training the model, which is mentioned in subsection
2.2.2. For Deep Learning models to satisfy the universal approximation theorem,
non-linearity is required so non-linear terms σ are frequently employed to bring
non-linearity into the model. Nonlinearity being defined as a function that violates
the superposition principle and/or homogeneity. Multiple layers may be added
to the model to increase the number of possible ’connections’ per layer, hence
boosting the predictive capacity of the model. The input x⃗ is altered each time
it passes a layer, from the input to the output of the model. This is referred to
as forward propagation and is depicted in the image ??. The number of weights
and biases are equal to the number of connections between the the two adjacent
layers.
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Fig. 2.1.: A single artificial neuron. This diagram represents the mathematical function of
y⃗ = σ(ω⃗x+ b⃗).

Fig. 2.2.: A deep learning model with three layers, 1 input layer x⃗, 1 hidden layers and 1
output layer y⃗. Each layer does a weighed sum of the previous layer.
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We know from the universal approximation theorem [11] that a network of neu-
rons with a sufficient number of layers and a non-polynomial activation function
may approximate any Borel-measurable function [40]. As a result, choosing the
optimal parameters for all neurons is the primary concern. This becomes an opti-
mization problem where the model can be trained using an algorithm known as
back-propagation [56] and a deep learning optimiser.

2.2.2 Backpropagation

Backpropagation is a training method used to adjust the weights and biases of every
neuron in a network using the chain rule. As the goal is for the model to interpret
the inputX and generate a prediction Ŷ such that it is as close as possible to the
desired output Y , a loss function can be employed and mathematical optimisation
methods can be used to adjust the parameters of every neuron. Many loss functions
can be used, such as the squared mean error (MSE)

LMSE =
1

2n

n∑
i=1

(Y − Ŷ )2, (2.5)

or the mean absolute error (MAE),

LMAE =
1

n

n∑
i=1

|Y − Ŷ |. (2.6)

Each loss function has its own advantages and disadvantages. For instance, the
MSE loss function is more effective than the MAE when training models with a
dataset with high variance, whilst MAE is more effective for training models with
lower variance [29] . The reason for this is due to the squared term in the MSE. If
the difference between Ŷ and Y is large, the loss reported by the MSE loss function
will be greater than MAE. The opposite is also true, if the difference between Ŷ and
Y is exceedingly small then the loss reported by the MAE loss function is higher
than the MSE loss function.

Once an appropriate loss function has been defined, back propagation can be used
to modify the weights ω and biases b of each neuron in the model. Essentially, this
procedure follows the chain rule. The objective is to adjust the parameters such
that the rate of change of the loss function with respect to the weight or bias is
minimised. The weights and biases are adjusted by the equations,

ωi+1 = ωi − α
∂L
∂ω

, (2.7)

17



and
bi+1 = bi − α

∂L
∂b
, (2.8)

where α represents the learning rate. The learning rate is a variable that adjusts
the rate of change for the weight and bias. The learning rate α can be adjusted by
deep learning optimisers as shown in subsection 2.2.4. The lower the learning rate,
the slower the training process, but the greater the likelihood that the model will
converge on a minimum.

We aim to determine the gradients ∂L
∂ω and

∂L
∂b . To update each neuron, the chain

rule can be used to derive the relation,

∂L
∂ω

=
∂L
∂Ŷ

∂Ŷ

∂z

∂z

∂ω
, (2.9)

which provides the gradient for the weights. For the biases, a similar equation is
used,

∂L
∂b

=
∂L
∂Ŷ

∂Ŷ

∂z

∂z

∂b
. (2.10)

The term ∂L
∂Ŷ

can be trivially derived from the loss function and the term ∂Ŷ
∂z can be

derived from the activation function. Finally the terms ∂z
∂ω and

∂z
∂b can be derived

from equation 2.4 and becomes x and 1 respectively.

2.2.3 Activation functions

The activation function, as mentioned previously, introduces nonlinearity into the
model. As demonstrated above, the term ∂Ŷ

∂z is dependent on the activation function
used, so in addition to selecting the activation function based on the function’s
characteristics, one must also select the function based on the activation function’s
derivative. A list of typical activation functions are listed below. The rectified linear
unit (ReLu),

σ(z) = max(0, z),
∂σ(z)

∂z
=

0, z < 0

1, z ≥ 0
, (2.11)

the leaky Relu,

σ(z) = max(0.1z, z),
∂σ(z)

∂z
=

-0.1, z < 0

1, z ≥ 0
, (2.12)

the Exponential Linear Units function (elu),

σ(z) =

α(ez − 1), z < 0

z, z ≥ 0
, (2.13)
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∂σ(z)

∂z
=

αez, z < 0

1, z ≥ 0
, (2.14)

the sigmoid function,

σ(z) =
1

1 + e−z
,

∂σ(z)

∂z
=

e−z

(1 + e−z)2
, (2.15)

and the tanh function,

σ(z) =
ez − e−z

ez + e−z
,

∂σ(z)

∂z
= 1− (ex − e−x)2

(ex + e−x)2
. (2.16)

Note that the discontinuous nature of the Relu activation function and its variants
means that those functions are nonlinear as it does not obey the superposition
principle.

2.2.4 Deep Learning optimiser

In the final step of the process, the learning rate α is adjusted using a ’learning
optimiser’. In practise, neural networks are composed of thousands or millions of
neurons, each with its own weights, biases, and the gradients of each neuron will
have to be calculated. Using the gradient descent method, defined as

∇θJ(θ) =
1

m

m∑
i=1

∇θL(x
(i), y(i), θ) (2.17)

can be computationally intensive. The computational cost is O(m) and due to the
data driven nature of Deep Learning, the computational cost can be prohibitive.
Therefore this motivates the use of learning optimisers. A second reason for em-
ploying learning optimisers is to direct the training procedure towards the optimal
local minimum. If the learning rate is too high, the model will be trained to achieve
a suboptimal minimum in a shorter amount of time. Similarly, if the learning rate
is low, the model will be trained to reach a minimum that is more optimal, but
training will take longer. There are numerous learning optimisers available, and
each employs a vastly different strategy to better the training process.

The stochastic gradient descent (SGD) algorithm is the standard optimisation tech-
nique for deep learning. In this instance, the gradient is viewed as an expectation
that can be approximated by determining the gradient of a subset of the dataset as
shown by,

g =
1

m′∇θ

m′∑
i=1

L(x(i), y(i), θ). (2.18)
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This is typically found by splitting the dataset into ‘batches’ and obtaining the
gradient of one batch. If the size of the batch is equal to the size of the dataset itself
then the SGDmethod is equivalent to gradient descent.

2.3 Convolutional neural networks

Convolutional neural networks (CNN) are a type of deep learning architecture
designed to analyse high-dimensional data, such as images or video sequences by
analysing the proximity of the data [38].

The traditional feed-forward deep learning models used to process these types
of data are typically very large in size. This is because, as depicted in figure ??,
each neuron in a FNN is connected to all neurons in the subsequent layer, and
so on. The number of connections between neurons can therefore increase by
O(m × n), where m and n represent the number of neurons in layer i and layer
i+ 1, respectively.

CNNs are based on the premise that important information from a large dataset
can be inferred from a small subset of the dataset. Therefore, it is ideal to filter out
unnecessary information so that the model only handles statistically significant
data. The model does this by employing ‘filters’ (also known as a kernel) which is
smaller than the input data and scans through the input data, moving from one
locality to the next. The filters contains values that acts similarly to the parameters
of a neuron, and these values applies the dot product to each local area to obtain
the output data which is called the feature map. This is represented as,

Yi,j = σ(
∑
k

Xi,k · ωk,j), (2.19)

where Yi,j is local value in the feature map,Xi,k is the input data, σ is the activation
function and ωk,jf is the weights of the filter. This method provides very interesting
strengths to the neural network. In particular these three concepts, sparse interac-
tions, parameter sharing and equivariant representations [21]. As CNNs restrict the
number of possible connections based on the local information in the input data as
seen in figure 2.3, the computational demand for a large dataset is reduced as fewer
parameters are required and the statistical efficiency of the model is improved.

This method also permits the sharing of parameters, as each parameter now has
multiple functions in the model, as opposed to a single function in a feedforward
network. Finally equivariance, defined as f(g(x)) = g(f(x)), is the ability to under-
stand representations in the data without being linked to the coordinate system.
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Fig. 2.3.: A convolution operation by a convolutional layer. The filter scans across the
input data and selects a n bym array and applies the dot product with the values
in the filter to produce a single value. In this case, the filter is 2 by 2 and the
stride is 1 by 1.

This means that if a model has learned a particular pattern, it is more likely to
understand the same pattern if it is in a different location, which is advantageous
for pattern recognitionmodels where the featuremight be located in different areas
of the image.

In equation 2.19, the use of the bias is not mentioned as there are three methods
to handling the bias. The first is to avoid using a bias, as many prominent CNN
models, such as ResNet, have chosen to do [24]. The second approach employs "tied
biases," which introduces the bias as a scalar such that,

Yi,j = σ[(
∑
k

Xi,k · ωk,j) + b], (2.20)

where b is the bias. The final method, termed "untied bias," introduces the bias as
both a scalar and a tensor, such that

Yi,j = σ[(
∑
k

Xi,k · ωk,j + bti,j) + b], (2.21)

where bti,j is the bias for each output location. The size of the filter and the distance
it travels (known as the stride) are both adjustable. Increasing the stride enables
the filter to bypass certain neurons, thereby reducing the computational demand as
fewer neurons are processed and reducing the amount of memory required. Note
that the model is applicable for any input data that is arranged in a regular grid
structure.

Note the change in dimension between the input data and the resulting feature
map as a result of the convolution operation. As shown in figures 2.3 and 2.4, one
can either retain this change in dimension or pad the input data with values such as
zero to prevent the dimension reduction. These padding are called valid padding
and same padding respectively.
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Fig. 2.4.: A convolution operation by a convolutional layer with padding. Arbitrary values,
in this case zeros are added outside the input data to prevent the reduction in
dimension.

Fig. 2.5.: A transpose convolution operation conducted by a transpose convolutional layer.
The extra padding increases the dimension of the input data, and a convolution
operation is applied onto the input data with extra padding to produce a feature
map with greater dimension compared to the input data.

The change of dimension is represented by the mathematical relationship,

Wi −K + 2P

S
+ 1 =Wi+1 (2.22)

whereWi is the input dimension,Wi+1 is the output dimension, K is the kernel
size, P is the padding and S is the stride.

The opposite operation to convolutional layers, transpose convolutional layers (also
known as deconvolution layers) are also possible to implement. The transpose
convolutional layers identically to the convolutional layers aside from the first few
steps. First, the input image is padded. This is usually done with zeros. If a stride is
used then the input data is spaced out as shown in figure 2.5.

The filters then work identically to the deep learning convolution operation shown
in equation 2.19. The increase in dimension can be calculated using

Wi+1 = (Wi − 1) ∗ S − 2 ∗ P + (K − 1) + 1. (2.23)
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2.4 Training

In the previous section, the individual action of each neuron is described. How-
ever, the method of determining the parameters for the entire neural network is a
different matter.

2.4.1 Initialisation

As a quick review, mathematical optimization methods are used to determine the
optimal values for the parameters of each neuron through back-propagation em-
ploying gradient descent or a variant of it. These methods can be vectorized such
that they are applicable to all neurons. To initiate the training procedure, the
weights are initialised by randomly determining their values according to various
probabilistic distributions. If the parameters are initialised with an optimal set
of values, it significantly reduces training time by preventing the neurons from
obtaining extreme parameters which could have a detrimental effect on the model
training process. Ideal parameter initialisation also provides numerical stability
during training. During training, gradient descent is capable of producing parame-
ters that either explode or vanish to zero. This results in the neuron being either
ineffective or too dominant in the model, which reduces the efficacy of connected
neurons and, consequently, the model’s accuracy. Using the ideal parameters to
initialise training prevents this from happening.

Currently, research is still ongoing to understand which probabilistic distribution is
ideal so several probabilistic distributions are currently in use by the Deep Learning
community. The probabilistic distributions can be classed into three categories,
Gaussian distributions, uniform distributions and constant. In addition, the mean
and variance of the distribution can be altered. To prevent the parameters from
exploding or vanishing, the variance of the parameters can be measured to ensure
it does not increase or decrease drastically. This resulted in the creation of two
distinct initialisation methods used in Deep learning: the Xavier (also known as
the Glorot initialisation) initialisation [20], and later on, the Kaiming (also known
as He) distribution [25].

The Xavier initialisation sets the bounds that the initial weight values generated,
where the distribution is centered on zero and the standard deviation is bounded
by the expression,

±
√
6√

ni + ni+1
(2.24)
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where ni and ni+1 is the number of incoming network connections and number of
outgoing network connections for a uniform distribution. For a normal distribution,
the distribution is again set to zero and the standard deviation is bounded by,

±
√
2√

ni + ni+1
. (2.25)

Experimentally, the Xavier initialisation is known to be particularly effective for
models with a symmetric activation function such as the tanh function or sigmoid
function. However, the Xavier initialisation does not work well for non-symmetric
activation functions such as ReLU so the Kaiming distribution is often used instead.
Here, the standard deviation of the Kaiming uniform distribution are centred on
zero and the standard deviation bounded by the equation,

±
√
6

√
ni
. (2.26)

and the standard deviation for the zero-centred Kaiming normal distribution is
expressed as,

±
√
2

√
ni
. (2.27)

2.4.2 Learning rate and batch size

Once the weight initialisation is set, obtaining the ideal learning rate is the next
step. Adjusting the learning rate can result in a lower generalisation error at a
cost of higher computational resources or a higher generalisation error with fewer
computational resources used. The dataset used to train the model becomes the
space that the model aims to predict in. To confirm that the model is generalising
on the dataset and not learning the dataset, the dataset is split into a training set
and validation set. The ratio of this split varies between applications and is subject
to numerous rules of thumbs.

The training set can be further subdivided into batches. As the dataset is primarily
processed by graphical processing units (GPUs), the memory capacity of DRAMs is
limited and can only store a limited amount of data. Additionally, it typically takes
time to transfer data from the storage space to the DRAM. Therefore, it is prudent
to select a batch size that is small enough to fit in the DRAM but not so small as to
increase processing time. The batch size can also affect certain algorithms such as
the SGD where the algorithm performs gradient descent on a batch rather than the
entire training set.
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After the entire training dataset is processed and gradient descent is performed, this
process is looped again and again, where each loop is called an epoch. After each
epoch, the model parameters will adjust and the overall performance of the model
may gradually move towards the ideal generalised error, or away from it. After
many epochs, the model performance will tend towards some minimum where it
may start to overfit on the data.

2.4.3 Standardisation, Normalisation and Batch
Normalisation

Scaling the dataset can improve the training process as many learning optimisers
and weight intialisations assume that the data in the dataset ranges from [−1, 1]

with a variance of 1. Two scalingmethods are used, which are called ‘normalisation’
and ‘standardisation’. Normalisation involves scaling the data by dividing by the
range of the dataset such that the range of values in the dataset fall between x ∈
[−1, 1] as mentioned previously. This is expressed as,

y =
x− xmin

xmax − xmin
. (2.28)

Normalisation can also refer to scaling the dataset from [0, 1] depending on the
properties of the dataset.

The alternative method is standardisation involves shifting the mean of the data to
zero, and scaling the standard deviation of the dataset to 1 dividing the dataset by
the standard deviation σ as represented as,

y =
x− x̄

σ
. (2.29)

Standardisation allows a better distribution of the dataset, which improves the
training process of the model.

Batch Normalisation is another method that can be used to improve the accuracy
of the model. Rather than scaling the dataset, one can scale the values before or
after they are processed by the neurons. Confusingly, this method is similar to
standardisation rather thannormalisation. During each epoch, batch normalisation
is applied using equation 2.29 as shown in figure 2.6. This minimises the number
of parameters either exploding or vanishing by normalising the parameters by the
standard deviation.

25



Fig. 2.6.: The batch normalisation process. The output values produced after passing
through a layer is standardised and fed into the next layer.
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2.4.4 Hyperparameters and Tuner

Optimising the ideal deep learning model relies on experimenting with the model
architecture to understand how it is making predictions, and improving either the
model architecture or the training process. There are many ways to do this, and
the parameters associated with this process are called hyperparameters. Hyper-
parameters are parameters that are set outside the training process. Example of
hyperparameters include the number of neurons in a fully connected layer, the
learning rate, deep learning optimisers, the number of filters in a convolutional
layer or a transpose convolutional layer. Optimising these hyperparameters can
have different affects on the model’s predictive ability.

For instance, increasing the number of neurons in a fully connected layer or the
number of filters in a convolutional network can increase the model’s capacity, or
the ability to predict more complex features. This comes at a cost of an increase in
computational requirements and the increased likelihood of overfitting. As a result,
depending on the training dataset, themodel architecture and training process, this
can either improve the overall accuracy of the model, or decrease it if overfitting
occurs. Similarly, the opposite is also true, reducing the number of neurons will
reduce the predictive ability of the model and generalise the prediction, which may
be advantageous for overfitted models but simplifies the prediction output of the
model. Therefore obtaining the ideal number of neurons or number of filters is a
balancing act.

This can be accomplished either manually by examining the model’s performance,
hypothesising themodel architecture’s limitations, and improving on them. Manual
search provides researchers with an understanding of the model architecture’s
capability without requiring additional technical methods. However, this method
has two significant disadvantages. The first is that it is a time consuming method.
Researchers must spend time to analyse the model and hypothesise the potential
adjustments to improve the model. The second disadvantage is the difficulty in
reproducing results, as the method is not systematic and relies on ’intuition’ which
is not same for each individual[5].

Adjusting the hyperparameters can be accomplished systematically using a ‘tuner’.
Tuners are hyperparameter optimisation methods that can be used to determine
the ideal hyperparameter values for the model, in other words, ‘tuning’ the model.
There are a few methods for determining the ideal hyperparameters such as grid
search, random Search and Hyperband.
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Grid search [39] is a method that involves specifying a search space, and intervals
to search within the search space for range of values or individual methods for
each hyperparameter, and training the model on all possible combinations. This
method can be tedious but allows a thorough investigation of the model architec-
tures capability. However, it should be noted that grid search suffers from the curse
of dimensionality. For each hyperparameter being adjusted, the computational de-
mand required to tune themodel increases by an order of magnitude. This compels
the use of other tuners.

Random search [5] is another method has been shown to work better than grid
search when the number of hyperparameters is high. Once a search space is
defined, random combinations are chosen to train on the model. The reasoning
behind why this method is more optimal than grid search is that in practice, many
hyperparameters do not alter the performance of the model. Random search
directly bypasses the determination of the effectiveness of these parameters and
therefore reduces the computational demand required overall. Although the most
ideal hyperparameter valuesmay not be found, some acceptable value can be found
that produces good results for the model.

The Hyperband [41] tuner is an interesting hyperparameter optimisation method
based on random search and uses the concept of resource allocation. The assump-
tion underlying Hyperband is that the most optimal models typically train more
quickly in the earlier stages of the training process than in the later stages. Once a
search space has been specified, Hyperband will conduct a random search using
fewer epochs. The algorithm will then reduce the search space based on the results
of the half-trained models and repeat the process using an increasing number of
epochs each time. Following a specified amount of search space reduction, the
algorithm will then conducts a standard random search to determine the ideal
model.

2.4.5 Sample size

For data drivenmodels, the size of the dataset required to train themodel is typically
large. But it is unknown howmany sample are required to train for the model. One
reason is the curse of dimensionality. There have beenmany studies on determining
the ideal size of the training set, such as papers from (Figueroa et al. 2012) [14], (Jain
and Chandrasekaren 1982) [28], and (Raudys and Jain, 1991)[54]. Though a widely
accepted practical method has not emerged, many rules of thumb have emerged.
One example is Goodfellow et al.’s book ‘Deep Learning’ [21], which recommends
at least 5000 observations per category for acceptable performance and at least
10,000,000 observations per category to match or beat human performance.
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2.4.6 Conclusion

To conclude this chapter, we have explained the basics of deep learning, and in-
troduce the mechanisms that the deep learning model will employ. The aim of
this chapter was to provide the foundational context to the convolutional neural
network that we aim to use, to predict the POD modes of turbulent fluid flow in
order to gain a deeper understanding of how the geometry of the array affects
turbulent flow.
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3The Lattice Boltzmann Method

„Bring forward what is true. Write it so that it is
clear. Defend it to your last breath!

— Ludwig Boltzmann

3.1 Introduction

The Lattice Boltzmann method (LBM) is a unique CFD scheme that simulates fluid
flow by employing the Boltzmann equation instead of the Navier-Stokes equations.
Evolving from the lattice gas automata method, the LBM is based on understanding
the molecular dynamics of particles to solve the macroscopic behaviour of fluid
flow [10]. What differs LBM from lattice gas automata methods in that it tracks
the distribution of particles compared to individual particles, which are tracked in
lattice gas methods. In a sense, if the Navier-stokes equations model the macro-
scopic behaviour of the fluid flow and the dynamics of individual particles are the
microscopic behaviour of the fluid flow, then the LBM aims to predict the fluid
flow on the mesoscopic scale, in between the microscopic and macroscopic levels.
Therefore it is reliant on the Boltzmann equation which is derived from the Kinetic
theory of diluted gases, the study of the mesoscopic properties of a large number
of particles.

This section introduces how the Boltzmann equation was derived and how the
Lattice Boltzmann Method (LBM) works. By understanding how the fundamental
equation was derived, it is possible to deduce the LBM’s characteristics, which in
turn helps us understand the strengths and weaknesses of the method. We avoid
lengthy mathematical derivations as more comprehensive explanations are readily
available such as the LBM textbook ‘The Lattice Boltzmann Method’ by Kruger et al.
[34].
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3.2 Boltzmann equation

The Boltzmann equation is derived from Newtonian mechanics, which assumes
quantummechanical effects are negligible. Within a control volume µ, there exists
N discrete particles that move and collide randomly with nearby particles in the
phase space. Here we consider the position r and velocity v of the particles as
coordinates. The particle density or distribution function as it is more commonly
known, is an important property in the kinetic theory of gases. The distribution
function is a function of the position of the particles denoted as r, the velocity of
the particle denoted as v and the time t, such that

N =

∫
f(r,v, t)dµ (3.1)

where f(r,v, t) is the distribution function andN is the total amount of particles
inside a volume µ. This distribution is represented by the Maxwell-Boltzmann
distribution function shown in equation 3.2,

f(v) = 4π
( m

2πKT

) 3
2
v2e(

mv2

2KT
), (3.2)

wherem is the particle mass, k is the Boltzmann constant and T is the tempera-
ture.

On a microscopic scale, the distribution function varies as particles enter and
exit the control volume. The movement of particles within the control volume
can be divided into two distinct aspects: particle streaming and particle collision.
Invoked during the streaming step, Liouville’s theorem states that the particle
density function is conserved along a particle’s trajectory. This permits the use of
the following equation to model the particle streaming terms:

f(r,v, t) = f(r + vδt,v +
F

m
δt, t+ δt) (3.3)

where v is the particle velocity, F is the force,m is the mass of the particle and f is
the particle density. Using the Taylor expansion, we find the movement of particles
obeys the following mathematical equation,

∂f

∂t
+ v∇xf +

F

m
∇vf = 0. (3.4)
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We implement a collision term in equation 3.4, which is affected by thermodynamic
properties like temperature and pressure. When its effects are included, we obtain
the Boltzmann equation, which is often symbolically written as

∂f

∂t
+ v · ∇xf +

F

m
· ∇vf =

(
∂f

∂t

)
coll

. (3.5)

where the term on the right-hand side represents the effects of collisions. The
expansion of the collision term depends on the phenomenological assumptions
one introduces. An often-used expression is(

∂f

∂t

)
coll

=

∫∫
σ(Ω) | v − v1 | ·[f(v′) · f(v1′)− f(v) · f(v1)]dΩdv1. (3.6)

wherev1 is the velocity of the other particle, σ(Ω) is the cross-section of the collision,
v and v′

1 are the velocities after collision which is determined by v, v1 and Ω

according to momentum conservation. The Boltzmann equation is a non-linear
integral-differential equation which is difficult to solve numerically. Therefore, the
LBM approximates the collision term instead. There are numerous methods for
approximating this term, but it must obey the conservation laws, conserving mass
and momentum.

Most LBMmodels use an approximation called the BGK approximation [6] to approx-
imate the collision term. The BGK approximation is a simple model to implement
as it is a linear approximation and assumes that after a collision, the particle density
f will relax towards an equilibrium particle density feq, with a rate proportional to
the deviation of f from feq. The BGK approximation is mathematically represented
as (

∂f

∂t

)
coll

=
1

τ

(
feq − flocal

)
(3.7)

where τ is the relaxation time, feq represents the equilibrium particle density
function. With equation 3.7, the Boltzmann equation becomes

∂f

∂t
+ v · ∇xf +

F

m
· ∇vf =

1

τ

(
feq − f

)
(3.8)

Note that the equation 3.8 has the underlying assumption is that the external forces
acting on the particle are negligible. This simplifies equation 3.8 and removes the
last term on the left-hand side. Therefore, the common form of the Boltzmann
equation used in the LBM is

∂f

∂t
+ v · ∇xf =

1

τ

(
feq − f

)
. (3.9)
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One can derive the macroscopic equations using the Chapman-Enskog expansion
and discover that 1

τ has a unique relationship with viscosity. Suppose the collision
rate 1

τ is increased. In that case, the local particle distribution function should
return to its original form much more quickly, which is a characteristic of high
Reynolds number flows. This relationship is shown to be

ν = c2
∆t

3

(
τ − 1

2

)
. (3.10)

After deriving the simplified Boltzmann equation, calculating themacroscopic prop-
erties of the flow is straightforward. As f represents the particle density function,
the density is the sumof all particle density functions. Similarly,momentumdensity
is the sum of the product of the particle density functions and their velocities.

m

∫
f = ρ (3.11)

m

∫
fv = ρv (3.12)

3.3 The Lattice Boltzmann Method

These ideas can be used to simulate fluid flow. As mentioned earlier, the main
principle of the LBM is to simulate and understand the change in the distribution
function f as it travels through a discretised solution domain. We discretise this
form into a discrete-velocity distribution function fi(x, t) where the density ρ and
momentum density ρv(x, t) can be found using

ρ(x, t) =
∑
i

fi(x, t), (3.13)

and,
ρv(x, t) =

∑
i

cifi(x, t), (3.14)

where ci is the velocity set and x are the points where fi is located in space. As the
discrete distribution function fi travels through the solution domain, it travels from
one ’node’ to another ’point’. Therefore, we can determine which ‘connections’ the
distribution function can take fromnode to node in 2D and 3D space. The higher the
number of ‘connections’, the higher the accuracy and the higher the computational
demand. Therefore, the velocity set contains the velocity information of fi as it
travels along these connections.
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Fig. 3.1.: D2Q9 velocity set. Here the distribution functions fi from i=1-9 travel to nodes
connected to the centre node via the connection lines during the streaming step.
f0 remains in the centre node.

An example of this is the D2Q9 velocity set, where D2 represents 2D space and Q9
represents the number of connections from one node to another. Many velocity
sets are available such as the D1Q3, D2Q7, D3Q15, D3Q19 and D3Q27 velocity sets.
An example diagram showing the D2Q9 is shown in figure 3.1.

Each node in the lattice Boltzmann method stores its own probability distribution
function and interacts with neighbouring nodes via connection lines. There are
three processes that can be used to summarise the interaction between the nodes.
The process of streaming, the collision process, and the computation of density
and momentum density,

The streaming process is a discretised variant of 3.3 and dictates the movement
of the fi along the connection lines. The new macroscopic density and velocity
are then computed in order to calculate the new probability distribution functions
during the collision process. This effectively updates the node values, and the
process is repeated until the simulation is terminated. Calculating the density
and momentum density is necessary only when calculating the flow’s velocity and
pressure fields. Consequently, the calculation step is frequently skipped in order to
reduce computational cost until it is required.

The discretized Boltzmann equation with BGK approximation is represented as

∂fi
∂t

+ ei · ∇fi =
1

τ

(
fi − feqi

)
(3.15)
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where fi represents the equilibrium probability distribution function at a node t is
the time, and ei represents the discrete velocity vector at the connection linkages.
The expansion of the Maxwell-Boltzmann distribution can be used to obtain the
local equilibrium distribution function.

feqi = wiρ

(
1 +

ciu

c2
+

(ciu)
2

2c4
− u2

2c2

)
(3.16)

where u is the local velocity vector, c is the lattice velocity and wi is the weight of
the connection link. The weight wi is dependent on the velocity set used.

We explain these steps in further detail in subsection 3.3.1, and later wewill describe
how boundary conditions are applied in subsection 3.3.2.

3.3.1 Simulation process

The simulation algorithm involves a few simple steps

• Lattice Initialisation

• Collision step

• Streaming step

• Calculation step

• Loop back to collision step

This algorithm is applied to all of the inner nodes in the domain, with the exception
of the nodes implementing certain boundary conditions, which are discussed in
the subsection on boundary conditions. The subsequent paragraphs explain each
step in greater detail.

Lattice Initialisation

The Lattice-Boltzmann method’s lattice has distinctive characteristics that distin-
guish it from the computational grids of other CFD schemes. When the solution
domain is discretized, a collection of nodes are positioned equidistantly from one
another, and connection links are created between them. The choice of this struc-
ture or the velocity set determines the number of symmetries preserved in the
LBM scheme. These configurations assume that a node’s particles only flow to the
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nodes to which it is directly connected. This indicates that the higher the number
of linkages, the greater the degree of freedom and, therefore, themore accurate the
solution. This has the disadvantage of requiring more computational resources.

Depending on the type of boundary condition used, additional boundary nodes are
either placed along the area of interest or existing nodes are converted to boundary
nodes after the domain is discretized. After the boundary nodes are assigned, the
lattice is initialised by assigning density and momentum density to the domain’s
nodes. The initial probability distribution function is then computed using equation
3.16.

Collision step

This step involves determining the collision operator using the updated density
and velocity values. This allows the node to calculate the new distribution function.
This is accomplished by

f∗i (x, t) = fi(x, t)−
∆t

τ

(
fi(x, t)− feqi (x, t)

)
, (3.17)

where f∗i represents the distribution function after collision and after f
eq
i is found

using equation 3.16.

Streaming step

During the streaming step, the particle densities are shifted along the nodes via
the connection links during the streaming step. The following equation provides a
summary of this step.

f∗i (x, t) = fi(x+ ci∆t, t+∆t). (3.18)

The new post-probability distribution function can then be used in the simulation
algorithm for the subsequent collision.

Calculation step

Using the new probability distribution function, the macroscopic properties of
velocity and pressure can be determined at this stage.
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ρ =

Q−1∑
i=0

fi (3.19)

v =
1

ρ

Q−1∑
i=0

cifi, (3.20)

whereQ represents the number of linkages, ρ is the macroscopic density, and ci is
the lattice speed. Using the calculated values of density and velocity, the collision
step can calculate the new equilibrium distribution function.

These three processes highlight the simple foundation behind the LBM.

3.3.2 LBM Boundary Conditions

Like all fluid problems, boundary conditions are required to define the fluid flow.
Unlike theNavier-Stokes equationswhere the velocity or pressure canbe set towards
a certain value, the LBM works by manipulating the distribution function fi. For
example, the periodic boundary conditions are relatively easy as one redirects the
distribution function leaving the solution domain to reenter the solution domain
on the opposite side.

There exist numerous methods for implementing solid boundary conditions [19],
but these can be categorised into two distinct families, the link-wise and wet-node
boundary conditions. Imposing solid boundary conditions using the LBM can be
quite tricky as the degrees of freedom associated with the system of mesoscopic
variables is much higher compared to the corresponding macroscopic system. In-
tuitively, the boundary conditions should be defined using macroscopic moments
such as density or momentum density, but determining the distribution function
fi using the macroscopic moments is not straightforward as many different meso-
scopic approaches exist to obtain the same macroscopic boundary conditions.

These approaches are defined easier as the link-wise boundary conditions and
wet-node boundary conditions after the methods used to impose the mesoscopic
boundary conditions. The difference between these boundary conditions depends
on how the distribution function fi is manipulated, usually by redirecting the dis-
tribution functions. The location where this redirection happens is either between
the nodes, which is the family that the link-wise boundary conditions fall under
or on a set of special nodes called wet nodes, which is the family under which the
wet-node boundary conditions fall.

38



Fig. 3.2.: Bounce back boundary condition. Before the outbound flow crosses the wall
during the streaming step, f4, f7 and f8 are chosen to be redirected.

Fig. 3.3.: Bounce back boundary condition. Here, the bounce-back boundary condition is
applied and the distribution functions f4, f7 and f8 are redirected backwards.

One of the most popular boundary conditions to use is the bounce-back boundary
condition which has been studied by various authors such as Zou and He [64],
Ginzburg and Adler [18], Bouzidi et al [8] and d’Humières and Ginzburg [19] and
imposes theDirichlet boundary condition onto the fluid. Assuming thewall does not
move, the bounce-back boundary condition determines the distribution functions
travelling past a pre-definedwall and re-diverts the distribution function back along
the connection line and replaces the outbound distribution function opposite it.
This is seen in figures 3.2, 3.3 and 3.4.

The advantage of using the Bounce-back boundary condition is that it is a stable
numerical scheme, which is especially close to the instability limit, as τ →∆t/2.
Furthermore, this boundary condition does not alter the distribution functions and,
therefore explicitly obeys mass conservation.
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Fig. 3.4.: Bounce back boundary condition. Here, after the bounce-back boundary con-
dition is applied, the distribution functions f4, f7 and f8 replace the former
distribution functions f2, f5 and f6 respectively as the new distribution functions
after the streaming step.

However, this boundary condition is dependent on having a regular square grid. To
closely model a curve, we must approximate curves using ‘stair-case’ shapes, which
has the indirect effect of reducing the order of accuracy from second-order accurate
to first-order accurate. Finally, the location of the no-slip boundary condition is
viscosity-dependent if the model is used with the BGK collision model. This causes
issues as it implies that the hydrodynamic solution will differ even if the governing
parameters, such as the Reynolds numbers, are fixed [15].

3.3.3 Computational parallelism

The LBM is particularly enticing to use as it does not need to solve the Poisson
equation, unlike Navier-Stokes solvers. The Poisson equation is a significant com-
putational restriction imposed on the incompressible Navier-Stokes equations.
Typically, the equation of state can be applied to compressible Navier-Stokes equa-
tions to obtain the pressure, as it requires the temperature parameter from the
energy equation. However, the incompressible Navier-Stokes equation lacks an
energy equation, so pressuremust be calculated differently. The alternativemethod
uses the Poisson equation, which is derived by finding the divergence of the Navier-
Stokes equation.

∇2P = −ρ ∂2

∂xi∂xj
ViVj (3.21)
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For conventional CFD methods, the computation of the Poisson equation dictates
that the entire velocity field must be calculated prior to calculating the pressure at
a single point. As velocity and pressure are intrinsically coupled, this constrains
the parallelisation of conventional CFDmethods. In contrast, the LBM lacks this
limitation as the algorithm is ’local’ meaning that each node processes data unique
to that node and does not rely on information from other nodes. This allows mul-
tiple processors to independently process each node without requiring extensive
coordination. Without concern for external variables, the LBM algorithm is able to
allocate processors to different nodes independently, allowing it to utilise the com-
putational power of many processors to simulate fluid flow exceptionally well.

3.4 OpenLB

As alluded to in the introduction, we choose to simulate these simulations using
the Lattice Boltzmann method (LBM). Using the LBM to generate the dataset has
some advantages for us :

• The simulations are almost embarrassingly parallel1, allowing them to run
very rapidly on an HPC [53] [2]. The vast majority of the computation is local
in space, allowing the code to be easily localised into individual cores [35].
This complements the trend in computational power whereby the hardware
used in HPCs has seen more use of multicore and manycore processors in
recent years[17].

• The LBM does not involve the Poisson equation as the pressure and velocity
can be recovered independently. This improves the computational efficiency
even more as the equations are local rather than non-local[50].

• The LBM is well suited for simulating fluid flow in complex geometries[50].

• Automating these simulations is relatively straightforward. The partial dif-
ferential equation can be easily discretised and implemented in each node.
Additionally, it is simple to implement the boundary condition, and the entire
code can be automated using a Python script.

We use the OpenLB C++ library to build the code of the simulations. OpenLB solves
the Lattice Boltzmann equation (LBE) as seen in equation 3.15. OpenLB is an open-

1Although all the calculations are done locally, communication between neighbouring nodes are still
required for each timestep.
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source library that was first published by Mathias Krause at the Karlsruhe Institute
of Technology and published under the GNU GPLv2 license.

Using OpenLB is advantageous in several ways,

• OpenLB has MPI and OpenMP built-in to parallelise the simulations on high-
performance computers and has checkpointing features to allow resumable
program executions.

• Implementing the LBM on OpenLB is intuitive due to the interfaces and
templates provided, which helps makes the code modular.

• OpenLB has been tested and validated over several publications [33].

• Detailed documentation is widely available.

Detailed documentation is themain reason why this LBM software was chosen. The
user guide written by Kummerländer et al. [36] is detailed. OpenLB also provides
various velocity sets for 2D or 3D simulations such as D2Q9 or D3Q19 and a wide
range of LBM collision models such as the BGK or the multiple-relaxation-time
(MRT). OpenLB automatically generates the mesh once the domain is initialised
and implements a wide range of boundary conditions on the domain. The OpenLB
library allows complex geometry creation through code or a computer-aided design
(CAD) file. We automate this process for the dataset generation stage by using
OpenLB’s geometry creation methods. We output these results in the VTK file
format which is used by Paraview to display spatial and temporal data.

3.5 Summary

To summarise, the LBM is a simple and powerful pseudocompressible CFD scheme
that can be used to simulate fluid flow. The majority of the computation is local,
allowing the method to be easily parallelisable and scalable. However, the LBM
is memory intensive as it requires a vast amount of information to be stored tem-
porarily for calculation purposes. Due to the scalability of these simulations, it is
appealing to simulate turbulent fluid flow on HPCs using the LBM and therefore is
the cause why we intend to generate the dataset using the LBM.

42



4Reduced order modelling

„Our life is frittered away by detail. Simplify,
simplify, simplify.

— Henry David Thoreau
(American naturalist, essayist, poet, and

philosopher)

4.1 Introduction

The quantity of data presents one of the greatest challenges when analysing turbu-
lent flows. To produce simulations with accurate high Reynolds number flows, a
dense mesh of grids is required to capture the features of the fluid flow, leading to
large datasets. To simplify and condense the data into a more practical form and
reduce computational costs, reduced-order modelling is often used to simplify the
dataset and obtain interesting insights. Broadly speaking, reduced order models
achieve cost reduction by focusing on large scales of the coherent structures in
fluid flow. In this thesis, we employ the Proper Orthogonal Decomposition (POD)
to identify dominant modes, although it is worth noting that many other potential
reduced order methods exist, such as Dynamic Mode Decomposition (DMD). The
PODmethod is chosen due to it’s simplicity.

4.2 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a well-known technique for decom-
posing a set of data into the optimal basis in the least-squares sense. It was first
introduced by J. Lumley [43] into the field of fluid dynamics to extract coherent struc-
tures in the fluid flow, and it has since become a popular technique for analysing
turbulent fluid flow. Notably, the POD is also known as the Principal Component
Analysis (PCA) and is a variation of the Karhunen-Loeve expansion. It is the most
efficient method for decomposing a fluctuating signal into lower-dimensional ap-
proximations in the sense of least squares. The first few terms of the decomposition
contain the majority of the flow’s energy and can therefore be used to reconstruct a
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representation which captures the majority of the energy of the fluid flow. Due to
these benefits, it can be utilised as both a model order reduction (MOR) and data
exploration method [59]. We will mathematically describe the POD below.

Let u(x, t) be the velocity of the fluid field where x and t are the spatial vector
and the temporal vector, respectively. We can use the Reynolds decomposition
u(x, t) = u(x, t) + u′(x, t) to decompose the velocity into a mean velocity u(x, t)
and fluctuating velocity u′(x, t). We assume that the velocity fluctuation u′(x, t)

can be decomposed into an infinite series containing the basis functions that are
dependent on space and time. We call the basis functions dependent on space the
POD modes, and the basis functions dependent on time, the time coefficients. This
infinite series can be represented as,

u′(x, t) =

∞∑
n=1

an(t)ϕn(x) (4.1)

where n represents the number of terms in the decomposition [63]. There exist
many other similar decompositions 4.1, such as the Fourier series, where the basis
functions are in terms of sine and cosine. Here, the PODmethod distinguishes itself
by imposing the condition of orthogonality onto the basis functions such that

∫
x
ϕi(x)ϕj(x)dx =

1, if i = j

0, otherwise
. (4.2)

The orthogonality property is useful as each time coefficient an(t) is only dependent
on a corresponding POD mode ϕn(x). We aim to determine the nature of the
corresponding PODmode ϕn(x). Let ψ be a function that we use to approximate ϕ
such that

max
⟨|(u′, ψ)|)2⟩

(ψ,ψ)
=

⟨|(u′, ϕ)|2⟩
(ϕ, ϕ)

, (4.3)

where ⟨.⟩ is the time-averaging operator and (a, b) is the inner product of the func-
tions a and b defined as

(a, b) =

∫
ab dx. (4.4)

We can take the Lagrangian multipliers approach [31] to determine ψ and minimise
the difference between ϕ and ψ using the L2 norm. Using this approach, we find
that the PODmodes can be obtained by the eigendecomposition of the covariance
of the fluctuating velocity u′(x, t). The covariance R is calculated using,

R =

m∑
i=1

u′(ti)u
′T (ti) = U ′U ′T ∈ Rn×n. (4.5)
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When the domain is discretised with n grid points, the eigenvalue and eigenvectors
are determined by the mathematical relationship,

Rϕj = λjϕj , ϕj ∈ Rn, λ1 ≤ λ2 ≤ · · · ≤ λn, (4.6)

where the eigenvalues are sorted in descending order and the eigenvectors repre-
sent the PODmodes. Finally, the time coefficients can be obtained by computing
the dot product of the matrixU and the PODmodes ϕ.

4.3 POD Example

Below is an example of the use of the PODmethod for the 2D flowpast a cylinder at a
Reynolds number of 100. Figures 4.1, 4.2 and 4.3 shows a snapshot of the streamwise
and transverse velocity components and vorticity of the unsteady flow. POD analysis
is then applied onto the velocity in the x and y direction respectively as shown in
figures 4.6 and 4.7, and figures 4.11 and 4.12. The strengths of each POD mode
are shown in table 4.1. Here the POD modes are normalised by the sum of the
eigenvalues and multiplied by 100 to obtain the percentage.

PODMode Strength % Streamwise velocity (X) Transverse velocity (Y)
Mode 1 94.85 32.44
Mode 2 2.29 30.63
Mode 3 0.89 19.15
Mode 4 0.83 3.75
Mode 5 0.42 3.68

Tab. 4.1.: PODmode strengths for the flow past a cylinder at Re=100. The first five stream-
wise POD modes contributes to 99% of the energy of the streamwise velocity
component, whereas the first five transverse PODmodes contributes to 89.65%
of the transverse flow.

The PODmodes show the location where the majority of the energy are as demon-
strated by figures 4.6 to 4.12. As the first two POD modes contain the majority of
the energy as shown in table 4.1, we can simplify the transient von Karman vortex
street, into two simple still snapshots. However, the PODmethod has two significant
downsides. The first is that decomposing the flow to a set of basis modes that are
chosen due to how much energy each mode contains is not necessarily a viable
method of analysing the flow. It is possible to have dynamicalmodes that have small
amounts of energy and are still highly significant. In the process of producing the
POD modes, we must use an averaging process to obtain the second order statistics
which dictates only partial information is utilised. The second downside is that the
POD modes do not contain any temporal information. The POD modes can only
represent the spatial distribution of the energies of the fluid flow.
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Fig. 4.1.: The instantaneous streamwise velocity in 2D flow past a cylinder at a Re=100.

Fig. 4.2.: The instantaneous transverse velocity in 2D flow past a cylinder at a Re=100.

Fig. 4.3.: The instantaneous vorticity of the 2D flow past a cylinder at Re=100.
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Fig. 4.4.: The averaged streamwise velocity in 2D flow past a cylinder at a Re=100.

Fig. 4.5.: The averaged transverse velocity in 2D flow past a cylinder at a Re=100.
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Fig. 4.6.: The first streamwise velocity PODmode. This dominant PODmode is identi-
cal to the averaged fluid flow, which is to be expected given that the majority
of the fluid flow’s energy should be within the simulation’s centerline and
not close to the wall.

Fig. 4.7.: The second POD mode for the streamwise velocity. Note the alternating
patterns in the wake behind the cylinder, which tells us about the spatial
correlation of the fluctuations of the flow in the area. The region with the
highest values seems to be directly behind the cylinder and progressively
becomes weaker. The alternating patterns also seems to diverge before
converging.

Fig. 4.8.: The third PODmode for the streamwise velocity. This PODmode appears
to exhibit the same pattern and strength as the second POD mode. The
only discrepancy is that the distribution appears to initialise with a half-
wake before continuing with the regular patterns observed in the second
streamwise PODmode.
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Fig. 4.9.: The first POD mode for the transverse velocity. The regions of high and low
energies seems to correspond to the movement of the wake oscillating up
and down along the centre line.

Fig. 4.10.: The second PODmode for the transverse velocity. This mode appears to
depict the fluid flow being split by the cylinder in the simulation’s centre,
after which the fluid converges back to the centre line. This looks identical
to the averaged transverse velocity.
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Fig. 4.11.: The third PODmode for the transverse velocity. Here the PODmode shows
a region with a series of rapidly alternating areas after the flow is split by
the obstacle. This region has an alternating pair of positive and negative
energies, suggest that the fluid oscillates between each region. The region
is initially concentrated behind the obstacle but eventually spreads out
across the domain, weakening in the process. Finally, the alternating series
of fluctuating energies weakens to an extent that it is hardly visible in the
figure.

Fig. 4.12.: The fourth PODmode for the transverse velocity. This PODmode is similar
to the third transverse velocity POD mode, but it appears to be slightly
shifted towards the right. Like before, the region shows areas with a strong
fluctuating energies that dissipates throughout the domain.
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4.4 Summary

We show the derivation for the POD and show it’s use in understanding the dynamics
of complex flow. We aim to use a Convolutional Neural Network to predict these
PODmodes, and thereby understand the complex dynamics behind the fluid flow.
As shown above, we can reconstruct the original flow using the time coefficients
and PODmodes.
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5Predicting POD modes using
convolutional neural network

„If we want computers to discover new knowledge,
then we must give them the ability to truly learn
for themselves.

— Demis Hassabis
(CEO of DeepMind Technologies)

5.1 Introduction

In this section, we simulate turbulent flow using convolutional neural networks.
We devise a method to predict the PODmodes of the turbulent fluid flow using the
geometric data of the obstacles, which could be used to understand the characteris-
tics of the turbulent flow and reconstruct the turbulent fluid flow. This is similar to
Guo et al. [22] work on predicting the steady flow around bluff obstacles, but we
adjust this method to predict the POD mode such that it can be used to reconstruct
turbulent flow.

As noted in section 4, reconstructing the original data requires both the PODmodes
and the time coefficients. However this work only aims to predict the PODmodes,
and therefore we use the time coefficients from the original dataset to test our
approach.

This study serves as a proof-of-concept to determine if it is possible to use a CNN to
interpret geometric information, and predict the modes of the proper orthogonal
decomposition modes of turbulent flow. One can interpret this in another way, is it
possible for a CNN to understand the boundary conditions imposed on the fluid
domain, and predict how the flow will change with a new boundary condition.

In this section, we present our methodology for reconstructing turbulent flow. We
first generate simulation data using CFD, and then calculate the first ten PODmodes
for all simulations to generate the dataset for the ML model. Then, we train the
model using a CNN and analyse the PODmodes predicted by the model. Finally,
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the turbulent flow is reconstructed using the predicted PODmodes and compared
to the original data. For the sake of brevity, the figures used in this section are for
the first two PODmodes. The remaining eight other POD modes are located in the
appendix, in section A.

5.2 Dataset Generation

5.2.1 Outline

This section outlines the method used to generate the dataset of PODmodes that
are used to train the model. We generate the simulation data using the Lattice
Boltzmann method due to its computational efficiency and then process the simu-
lation data to obtain the PODmodes. We are interested in understanding how the
geometry of obstacles affects the turbulent fluid flow so we will vary the geometric
configuration of the arrays and keep all other parameters constant.

We call a group of obstacles in a specified location, an array of obstacles. There
are almost an infinite number of configurations in that an array of obstacles can
be arranged. Multiple factors are involved, such as the size, shape, number, and
location of each obstacle, which can vary in an array of obstacles. As a result, due
to the problem’s complexity, we decide to reduce the number of possible geometric
combinations to a reasonable level. We choose to develop a framework in which a
five-by-five grid is placed in the centre of the simulation domain. Then, we generate
obstacles and position them within the grid. There are 25 possible locations where
each equally sized square obstacle is placed. For the case with adjacent obstacles,
they are merged to form one larger obstacle.

An example is given in figures 5.1 to 5.4. This framework limits the number of
possible combinations to 33,554,4311 and keeps the size and shape of each obstacle
constant. This grid approach can also produce complex geometric arrays. Referring
back to figures 5.1 to 5.4, as the number of obstacles increases, the flow regime can
be seen to steadily change from the flow past bluff bodies to the flow through a
series of obstacles, to the flow around a rough body.

As it is not possible to determine how many simulations are needed to produce
a broad dataset, we aim to simulate as many simulations as possible. As compu-
tational resources are limited, we simplify the simulations to reduce the compu-
tational demand, allowing more simulations to be conducted. As a result, we opt
to use the Lattice Boltzmann method to produce the simulation data. The LBM is
1This value was calculated by 225 − 1. The case with no obstacle is not considered.
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nearly embarrassingly parallel [34] which allows each simulation to be conducted
quickly using multiple cores and more efficiently. As a result, the use of LBM
synchronises well with GPUs or HPCs.

5.2.2 Simulation Set up

We run 2D LBM simulations on the Tier-2 High-Performance Computer and data
science service ’Cirrus’ (HPC). Cirrus is an HPE/SGI 8600 system and contains 280
standard compute nodes and 38 GPU compute nodes. Each standard computes
node contains two 2.1 GHz, 18-core Intel Xeon (Broadwell) processors and 256GB of
memory. Cirrus also provides GPU compute nodes where each GPU node contains
two 2.4 GHz, 20-core Intel Xeon (Cascade Lake) processors and four NVIDIA Tesla
V100-SXM2-16GB GPU accelerators. All nodes are connected via a single InfiniBand
fabric. We conduct the simulations using the open source C++ LBM library OpenLB,
where the details of the library are discussed in subsection 3.4. The simulations
were parallelised using the OpenMPI protocol and compiled using the Intel C++
compiler, version 19.0.0.117.

As previously mentioned, we generate a series of obstacles within a five-by-five
grid, where an obstacle is considered a single square within the five-by-five grid,
and we call an array a group of obstacles. A series of examples are shown in figures
5.1, 5.2, 5.3 and 5.4 representing the generation of obstacles within a five-by-five
grid, where the shaded areas represent the size and location of each obstacle in the
array. For example, in figure 5.2, the total number of obstacles in this array is 8.

Fig. 5.1.: An array with two obstacles. This
is similar to the flow past a set of
bluff bodies.

Fig. 5.2.: An array with 8 obstacles. This
produces a fluid flow that is sim-
ilar to the flow past a rough sur-
face.

Fig. 5.3.: An array with 16 obstacles, is sim-
ilar to the flow past a rough body.

Fig. 5.4.: An array with 22 obstacles, is sim-
ilar to the flow past a rough body
as well.
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Fig. 5.5.: Graph of the distribution of the total number of obstacles in the dataset.

Two methods were used for generating the locations of these obstacles depending
on the total number of obstacles contained in an array. The reason for this is that
if we solely chose to generate the location of obstacles randomly then the set of
randomly generated obstacles would have been unlikely to contain arrays with very
low or very high numbers of obstacles. As mentioned earlier, the type of simulation
data used will affect the accuracy of themodel predictions. To emphasise themodel
learning the PODmodes around these obstacles, we generate all possible geometric
configurations for arrays with a total number of obstacles numbering from 1 to 2
and 23 to 24. Finally, we randomly generate the configurations for arrays with the
total number of obstacles ranging from 3 to 22, where the number of configurations
for each total number of obstacles is constant. The distribution of the number of
arrays generated for the dataset is shown in figure 5.5. In total, 1590 arrays were
generated, where 650 arrays were generated for arrays with a total number of 1, 2,
23 and 24 obstacles, and 940 for the remainder.

We choose our simulation parameters and boundary conditions based on reducing
the computational resources required per simulation whilst maintaining the accu-
racy and precision needed for turbulent fluid flows. Table 5.1 has the simulation
parameters used for these simulations.

We run simulations with a Reynolds number of 400 for a single obstacle and 2000
for a five-by-five domain. We show a typical simulation in figure 5.6, where the fluid
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Reynolds number 400 for each obstacle, 2000 across the 5-by-5 grid
Total Time 106 pass-through time
Recorded data interval 21T-106 pass-through time
Domain Size 1Dx1D
Grid points 303x303
Obstacle size 1/40D
Five by Five grid size 1/8D
Collision operator BGK
Velocity set D2Q9
Mach Number 0.2
Relaxation time 0.502273

Tab. 5.1.: Simulation parameter table.

flows from the left boundary of the domain to the right. The simulations are run
for 106 pass-through times, where one pass-through time is defined as the time it
takes for the mean streamwise velocity to travel from the left to the right side of
the domain. The turbulent fluid flow is measured between 21 and 106 pass-through
times. The data for the first 21 pass-through times were not recorded because we
were interested in observing developed turbulent flow; omitting these data reduces
storage and computational requirements.

The total domain size is 1D by 1D, where 1D represents the side of the square
solution domain, and the number of nodes used in the simulation is 303 by 303.
The centre of the array is located in the centre of the domain, so 0.5D away from
the entrance and 0.5D away from the height of the domain. The size of the array in
comparison with the domain is 1

8D, and the size of each obstacle is
1
40D. We used

the BGK collision model as the collision operator as it is computationally efficient
and provides sufficient accuracy. The D2Q9 velocity set scheme was used, and the
Mach number used in the simulation is 0.2 to reduce compressibility effects. The
relaxation time used for these simulations was 0.502273. This value was obtained
by using equation 5.1 [34],

Re

Ma
=

N√
3(τ − 0.5)

(5.1)

where Ma is the mach number, Re is the Reynolds number, τ is the relaxation
number andN is the number of nodes along the characteristic length.

The fluid is driven by a forcing term, and periodic boundary conditions are applied
along the edge of the domain. Periodic boundary conditions were chosen as it
improved the numerical stability of simulations, which allows the size of the fluid
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Fig. 5.6.: Diagram of the fluid domain. The edges around the fluid domain have periodic
boundary conditions applied, and the entire domain has a forcing term applied
to it. The obstacles are placed 0.5D away from the left and in between the top
and bottom edges of the fluid domain.

domain to be reduced and decreases the computational resources needed for each
simulation. Using periodic boundary conditions alters the nature of the type of
simulations, rather than it being the flow past a single set of obstacles, it becomes
similar to the flowpast an infinite 2D plane of an array of obstacles. This type of flow
is a good approximation of what we would expect to see in large cities and allows
turbulent flows to developing which allows more advanced coherent structures to
form during the simulation. We apply no-slip boundary conditions for the edge
of the obstacles in the array, using OpenLB’s implementation of a bounce-back
boundary condition. No turbulence model was used for these simulations.

5.2.3 POD mode calculation

After simulating all the desired cases, we calculate the POD modes. The POD
modes were calculated using SVD and were conducted on the Tier-2 HPC ’Cirrus’.
We determine the fluctuating velocity values for each simulation’s transverse and
streamwise velocity and calculate the fluctuating values by finding the difference
between the instantaneous velocity values from the mean. We use Welford’s online
pass to calculate the mean velocity as the method allows an iterative ’piecewise’
calculation of the mean, whereby we can load a slice of the dataset into the RAM
and compute an approximation of the mean. In comparison, the naïve method
of calculating the mean demands the entire simulation data to be loaded onto the
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RAM. Although Welford’s online pass is not as fast compared to the traditional
method, it is a stable algorithm that allows the processing of large datasets.

The mathematical equation to calculate the mean using Welford’s online pass is,

x̄n = x̄n−1 +
xn − x̄n−1

n
, (5.2)

where x̄n is the running mean, x̄n−1 is the previous mean, xn is the sample value
and n is the running number of samples. This algorithm initialises x̄n = 0 and n = 1

then iterates to process the rest of the dataset. Welford’s online pass is typically used
to calculate variance and higher-order statistical moments, although we repurpose
the algorithm to reduce the RAM demand required for this operation.

We use the SVD function from the Python library NumPy [23] was used to calcu-
late the POD modes. This function is a Python wrapper for the LAPACK routine
“DGESDD”. Once calculated, we save the first 10 PODmodes for both the streamwise
and transverse velocity directions into an H5 file.

5.2.4 Data Analysis tools

We employ the Python libraries NumPy, Pandas, and PyVista [58] to handle the data
analysis of this project. NumPy [23] is a Python library containing high-level math-
ematical functions that operate on python objects called NumPy Arrays. NumPy
functions are typically wrappers for C or FORTRAN functions which allows fast
processing of data whiles maintaining Python’s ease of use. Pandas [60] [47] is a
data analysis library used to handle data. Pandas use a python object known as a
Pandas DataFrame, and it is built on top of NumPy. Pandas can be used to clean
data, fill data, normalise, merge and join, visualise, inspect, load and save data.

We used the PyVista Python library to open and scan through the VTKfiles produced
by the OpenLB simulations, and the desired data was then converted into a Pandas
Dataframe and later to a NumPy array for data analysis and processing. We use
the PyVista library to simplify the Python code as the code is more ‘Pythonic’
than ParaView’s implementation of Python and VTI. An example of this simplicity
is shown in ??, where the code written below is used to open the VTI files. In
PyVista, once a list containing the location of all files is identified, we use the
‘read’ function to open the data for each block and append it onto a list which we
then turn into an array. In comparison, this is the code to open a VTI file using
Paraview’s implementation of Python, PVserver. Paraview’s Python implementation
uses many unique functions and objects that are only applicable to PVserver for
the data analysis and this complicates the coding process.
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An example of the first two POD modes are shown in figures 5.8 and 5.9 for the
streamwise velocity for the streamwiseflow through an array shown infigure 5.7. We
leave the figures for the remaining eight PODmodes are in section A.1. The patterns
seen in the figures containing the POD modes show how unique the distribution of
energies can be, and provides a view of what PODmodes are expected to be seen
throughout the 1590 simulations conducted. Generally what we see is that for the
first two PODmodes, the PODmodes tend to be similar across all the simulations,
but the remaining PODmodes vary drastically.

Fig. 5.7.: Diagram of the array of obstacles where the PODmodes for example figures 5.8
to A.8.

Fig. 5.8.: First PODmode of the simulated
flow through an array of obsta-
cles seen in figure 5.7. Here, we
see a distinct horizontal separa-
tion between the region of posi-
tive energy and negative energy,
indicating the flow is fluctuating
between these areas.

Fig. 5.9.: Second POD mode of the simu-
lated flow through an array of ob-
stacles seen in figure 5.7. Similar
to the first PODmode as seen in
figure 5.8, two distinct horizon-
tal regions are seen but shifted
downwards. As before, this sug-
gests the streamwise velocity al-
ternates

60



5.3 Convolutional neural network

5.3.1 Outline

In this subsection, wewill discuss howweobtained our CNNmodel architecture, the
CNNmodel, andhowwe trained themodel. Aswe are attempting to understandhow
the geometry of the obstacles can alter the turbulent flow, it is reasonable to expect
that a given array of obstacles would generate a unique set of PODmodes. Therefore
we designate the input of the model to be the geometry of the arrangement of the
obstacles, and the output is the corresponding PODmodes.

Overall, the model can be described in four steps. The first is the use of the signed
distance function to generalise the geometry in subsection 5.3.4. The second is
down-sampling the dataset such that the computational demand of the model can
be reduced when training. This is discussed in subsection 5.3.5. The third step
is training using the model architecture listed in subsection 5.3.3. Finally, we up-
sample the output of the mode, using the methods discussed in subsection 5.3.5.

5.3.2 Model architecture search

Obtaining the model architecture for this project was a process of trial and error.
As we were inspired by Guo et al. [22] on their work of predicting steady flow using
the geometry, we initially replicated their model and modified the dimensions to
fit the dataset. We then used the Keras hyperparameter tuner to see explore which
hyperparameters were ideal for the model. This involved increasing the number of
layers in the encoder and decoder, changing the activation functions, altering the
convolutional kernel sizes, different loss functions and strides and the number of
neurons in a layer. Mean squared error and mean absolute error was experimented
and we found that the mean squared error converged faster and had a lower mean
relative absolute error compared to the mean absolute error.

We found that increasing the number of layers in the encoder improves the perfor-
mance up to the third layer. Any additional layers in the encoder grants negligible
improvement in accuracy. A similar effect is also seen when increasing the number
of layers in the decoder but up to the fourth layer. More than 200 models were
trailed and the chosen model architecture was chosen based on performance and
model size.
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5.3.3 Model architecture

The project’s convolutional autoencoder architecture is depicted in figure 5.10.
The convolutional neural network is built using the TensorFlow machine learning
Python Library. TensorFlow is a tool for large-scale machine learning that can func-
tion in a number of contexts. TensorFlow supports a wide variety of applications,
with an emphasis on the training and inference of deep neural networks. We predict
the POD modes using two convolutional layers, two fully connected layers, and
three transpose convolutional layers. After each operation, the batch normalisation
method is applied to the weights and biases of the operation’s output. After initially
emulating Guo et al.’s [22] model architecture to determine if it also worked for this
application, this model architecture was determined. We discovered that adding an
additional dense layer between the encoder and decoder and increasing the depth
of each feature map reduced the model’s error. We do not use any biases for the
convolutional and transpose convolutional layers.

We use Keras Tuner’s [51] implementation of Bayesian optimisation to determine
the approximate hyperparameters that the model works with. This model is a
separate encoder-separate decoder model, which predicts each individual POD
mode. We find that there is minimal difference between a shared-encoder separate-
decoder model and a separate-encoder separate-decoder model. We choose to use
the separate-encoder separate-decoder model as training these models requires
fewer amounts of RAM overall, although it increases the computational demand
required to train these models.
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5.3.4 Signed Distance Function

We use the signed distance function to represent the geometry we feed into the
neural network. This model’s input is an array representing the array’s geometric
information. The geometric data is given in binary, where 1’s denotes the presence
of the obstacle in the fluid domain and 0’s represents the absence of the obstacle in
the fluid domain. Although the neural network model should theoretically be able
to form a link from the geometric data to the POD data, in practice, it is difficult
for the model to train on input with zeroes. This is because the weights of the
first layer are effectively reduced to zero, reducing the layer’s effectiveness and the
effectiveness of back-propagation as only the bias is being acted upon. See equation
2.4. A method to combat this is the signed distance function (SDF). The SDF is quite
simple. It produces a field of values representing the shortest distance from the
individual point to the surface of the nearest obstacle, as shown in equation 5.3.
SDF defines the field outside of the obstacle as positive and inside as negative by
convention. An example of this is shown in figures 5.11 and 5.12.

Fig. 5.11.: The SDF of an array with four
obstacles.

Fig. 5.12.: The SDF of an array with ten ob-
stacles.

D(i, j) = min|(i, j)− (i′, j′)|sign(f(i, j)) (5.3)

SDF is a method of neural implicit shape representation that aids in inferring the
finer aspects of geometry. This method is low cost in terms of computational
demand, eliminates noise, doesn’t require any additional parameters to train, and
gives a continuous representation of the geometry [57] [48]. To apply the signed
distance function to the geometric data, we utilise the SciPy function "distance
transform edt" as shown below.

1 def get_distance(f):

2 # Signed distance transform

3 dist_func = ndimage.distance_transform_edt
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4 x_1 = -dist_func(f)

5 y_1 = dist_func(-(f-1))

6 return np.where(f==0, y_1, x_1)

5.3.5 Pre-processing and Post-processing

We apply various pre-processing steps to the dataset before we use the dataset
to train our model. Our SDF and POD datasets represent the input and outputs
of our convolutional neural network, respectively. Depending on the nature of
the datasets, it requires a different preprocessing method to enhance the ease of
training for the convolutional neural network. We experimented with standardising
andnormalising thedatasets anddiscovered that standardising thedataset improves
the training process for these datasets.

As a reminder, standardisation is a method used to scale the dataset such that the
mean is zero and the standard deviation is equal to 1, as shown in equation 5.4.

z =
x− µ

σ
(5.4)

where z are the scaled dataset values, x are the unscaled dataset values, µ is the
mean and σ is the standard deviation of the unscaled dataset. Then, we apply
downsampling to both datasets to reduce the dimensional size from (303, 303) to
(64, 64). Reducing the dimension size reduces the computational demand and
enables more complex and expansive model architectures. The model will then
predict the downsampled POD mode prediction, which was upsampled to the
original dimension for comparison later. The bilinear interpolation technique is
utilised to downsample and upsample the datasets. This approach was taken as this
reduces the size of themodel which allowed training to happen at a faster rate. This
does however lose coherent structures present in the flow due to the interpolation
method.

5.3.6 Training

In this subsection, we describe the method used to train the model. First, we
initialise the model parameters with a random normal distribution having a mean
of zero and a standard deviation of 0.05. The random normal distribution was
chosen after we determined that it performed more effectively than the He and
Xavier distributions. All model training was conducted on the tier-2 HPC JADE2,
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Fig. 5.13.: Two figures comparing the affect of downsampling from (303, 303) to (64, 64).
This downsample reduces the number of pixels in the image by 95% but still
retains the essential information of the image.

where themodel is trainedusing eight TeslaV100s onNVIDIA’sMAXQDeepLearning
System and connected via high-speed NVlink interconnect.

The generated dataset is post-processed and downsampled from a dimension of
(303, 303) to (64, 64). As mentioned previously, the dimension reduction is due to
the computational demand of training the model that can output larger predictions.
The reduction contributes to a 95% decrease in pixels but still retains the essential
information of the data as shown in figure 5.13.

We choose to use the MSE loss function as it appears to be the most stable loss
function that allows the model to make reasonable predictions. We also attempted
to use the MAE loss function, but it did not train the model well. And we used a
batch size of 300 for training due to the RAM limitations of the GPUs used to train
the model.

The dataset is randomly shuffled and split into training and validation sets to a ratio
of 9:1. We then train the model with two different learning algorithms, Adam and
SGD. We initially train the model for 500 epochs using the Adam loss optimiser and
then train it for 5000 epochs using SGD. It appears that training the model with
the Adam loss optimiser helps shift the model parameters to a state where SGD
can then be utilised sensibly. We find via extensive experimentation that if the
SGD loss optimizer were utilised exclusively, the training loss of the model would
converge and fluctuate around a higher training loss. The initial use of the Adam
loss optimiser appears to aid in training the model to a lower minima, and the use
of the SGD loss optimiser afterwards further reduces it. We use an early stopping
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Fig. 5.14.: Epoch loss graph for POD
mode 1

Fig. 5.15.: Epoch loss graph for POD
mode 2

Fig. 5.16.: Cropped epoch loss graph for
PODmode 1

Fig. 5.17.: Cropped epoch loss graph for
PODmode 2

method to halt the training process once the validation loss stops improving after
500 epochs to reduce computational demand.

We attach the epoch training graphs from figures 5.14 to A.16. These generally show
that there is a big decrease in loss after a few epochs, which suggests that the Adam
loss optimiser is highly effective in reducing loss. Due to the sudden decrease in
training and validation loss in the first few epochs, we attach additional figures
showing the training loss from epoch number 100 to the last epoch, in figures 5.16
to A.24.

Across all training graphs, the training loss decreases rapidly in the first few epochs
as the model quickly adjusts away from the initialised parameters. For the first 500
epochs, we see a lot of fluctuation in the training loss and a general downward trend.
After the first 500 epochs, the SGD loss optimiser is used, which smooths out the
training and validation loss. In some cases, the SGD loss optimiser does not reduce
the validation loss significantly, as the training process ends after 1000 epochs.
However, in cases like PODmodes 4 and 6, figures A.10 and A.12 respectively, the
SGD loss optimiser does seem to do some work in reducing the training loss but
not significantly.
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5.4 Results

This section details the outcomes of our project. First, we evaluate the model’s
predictions and then evaluate the POD modes’ accuracy in subsection 5.4.2. As
the POD modes are a decomposition of the turbulent fluid flow, it is difficult to
understand the significance of these errors intuitively when understanding how
the errors in the PODmodes affect the prediction of the velocity field. Therefore,
in subsection 5.4.2, we reconstruct the turbulent fluid flow and analyse how the
model’s accuracy affects the results. We assume that the time coefficient data can
be obtained with perfect accuracy and understand how the errors in the PODmode
predictions alter the reconstructed turbulent flow.

5.4.1 Error evaluation

We use the mean relative absolute error (MRAE) to evaluate the performance of the
model. This is defined as

MRAE =
1

Tmax − Tmin
· 1

n×m

n∑
i=1

m∑
j=1

|Tij − Pij |, (5.5)

where T and P represent the original PODmodes’ true and predicted values and
the ML-predicted POD modes. Finally, Tmax and Tmin are the highest and lowest
elements in the matrix T , and n andm represents the domain size which is 303 and
303 respectively.

We select the MRAE as the error metric because it uniformly measures the overall
error across the prediction image, and it is more intuitive to understand. The root
mean relative squared error (RMRSE) is an alternative measure of error that could
be used, but due to the squared nature of RMRSE, the error tends to represent the
greatest element-wise difference between the true POD mode and the predicted
PODmode.

We calculate the model’s accuracy using the MRAE by comparing the model pre-
dictions to the downsampled training and validation datasets. We then report the
MRAE of our model in figure 5.18 for each PODmode. Note that the MRAE values
are computed using the model predictions before being upsampled, so the error
values do not contain interpolation errors. Additionally, the standard deviation of
the MRAE is calculated and shown in figure 5.19.
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Fig. 5.18.: Mean relative average error comparison between training set and validation
set.

Depending on the PODmode predicted, themodel’s averageMRAE ranges from 0.21
to 0.36, and its standard deviation ranges from 0.045 to 0.15. We do not observe any
overfitting in the model because the MRAE of the validation set is not consistently
higher than that of the training set, which would indicate overfitting.

To further evaluate themodel, we investigate the distribution ofMRAE values across
all PODmodes and the training set and validation set to determinewhether there are
any discernible patterns in the accuracy of the predictions. The histogram figures
show these distributions in figures 5.20 to A.32. Across all histograms, the error
distribution tends to be positively skewed, with a long right-hand tail indicating a
wide range of errors. Still, the majority of errors are typically relatively small.

We examine further more into the performance of the model by comparing the
number of obstacles in the array to the averaged MRAE error as seen in figures
5.22 to A.40. This was done as we theorised that the dynamics of the flow through a
few obstacles are drastically different from the flow around an array with a high
number of obstacles. We find that the model does well at predicting the PODmodes
for arrays with higher obstacles but does poorly for arrays with smaller obstacles.
To explain this, we examine the predictions made by the model case-by-case to
understand the predictive power in subsection 5.4.2.
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Fig. 5.19.: Standard deviation ofMRAE comparison between the training set and validation
set.

Fig. 5.20.: The normalised histogram showing the distribution of MRAE error for the first
PODmode, separated between the training set and validation set.
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Fig. 5.21.: The normalised histogram showing the distribution of MRAE error for the
second PODmode, separated between the training set and validation set.

Fig. 5.22.: A histogram showing the error distribution against the number of obstacles in
the array for the first PODmode.
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Fig. 5.23.: A histogram showing the error distribution against the number of obstacles in
the array for the second PODmode.
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5.4.2 Predictions and reconstruction

In this subsection, we present the model predictions. We first show the best POD
mode predictions and then evaluate the model predictions for two different cases.
For these two cases, one had the lowest error across all the POD modes, and the
other had the highest error across all POD modes. We will then reconstruct the
turbulent fluid flowusing the predicted PODmodes from the two cases and compare
it to the simulated data to determine the model’s efficacy.

We attach the best ML-predicted POD modes in figures 5.24 to 5.25 and figures A.41
to A.48 in the appendix. We find that the model can accurately predict POD modes
1, 2, 4, and 5 for certain simulations. This demonstrates that the machine-learning
architecture is capable of predicting the correct POD modes. For the remaining
POD modes, the predicted POD modes appear incapable of predicting a POD mode
similar to the actual POD modes. This becomes a common theme through the
predictions, that the model appears capable of reproducing images that resembles
the PODmodes but cannot reliably predict the PODmodes.

Fig. 5.24.: Best ML-predicted PODmode for PODmode 1.

Fig. 5.25.: Best ML-predicted PODmode for PODmode 2.

We now present two different cases, array 332 and 33 after the index used to cate-
gorise the simulations. Figures 5.26 and 5.27 depict these two distinct cases. These
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obstacle arrays were selected because they represent the case with the lowest and
highest MRAE errors across all PODmodes, respectively. In the provided figures,
the dark shaded area indicates the presence of an obstacle, while the white area
indicates the absence of a physical obstruction in the array.

Fig. 5.26.: Simulation 332 Fig. 5.27.: Simulation 33

Simulation 332 represents the array with the lowest total MRAE errors across all POD modes and
simulation 33 is the array with the highest total MRAE errors across all POD modes. The black
block represents where the obstacle resides, and white is the empty space.

For arrays 332 and 33, we attach figures comparing the predicted and true POD
modes in figures 5.28 to 5.31 for the first two PODmodes, and we leave figures A.49
to A.64 representing the last eight PODmodes in the appendix. Note that we call
the POD modes calculated from the simulation, the ‘true POD mode’ and for the
ML predicted PODmodes, we call those PODmodes ‘the predicted PODmode’.

In evaluating case 332, as depicted in figures 5.28 and 5.29, and A.49 to A.56 we
observe that themodel can predict, in general, the characteristics of the PODmodes.
In the first PODmode, shown in figure 5.28, the mode accurately predicts the two
distinct positive and negative regions, as well as the beginning and ending edge of
these regions.

Fig. 5.28.: PODmode 1 comparison for array 332.

74



Fig. 5.29.: PODmode 2 comparison for array 332.

Fig. 5.30.: PODmode 1 comparison for array 33.

Fig. 5.31.: PODmode 2 comparison for array 33.
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For the remaining POD modes, the model seems to predict characteristics that
resemble those of the true POD mode, although the prediction is not similar. It
seems that the model is capable of learning these patterns but are unable to use
them in the correct context so far. To demonstrate this, for the second PODmode
represented in figure 5.29, the model makes a prediction comparable to the first
POD mode despite lacking access to the corresponding dataset. The prediction
differs in the location of the regions of positive and negative energies, as we can
see that the predicted PODmodes would be similar to the true PODmodes if the
positive and negative features were translated slightly upwards. This suggests that
for the majority of second PODmodes, the model considers the second PODmode’s
dataset to be extremely similar to the first POD mode’s dataset. This is likely the
result of the force acting on the fluid. As the fluid is accelerated in a streamwise
direction, its direction is predominantly linear, and we would expect to see this
in the initial few POD modes. This is also seen in other types of flow, using the
example from section 4, figure 4.6 is highly similar to the averaged flow seen in
figure 4.4.

For the third, fourth, and fifth PODmodes, as depicted in figures A.49, A.50, and
A.51, the model predicts more interesting features. In the true POD modes for
these three POD modes, there are four distinct regions containing two positive and
two negative areas that alternate along the streamwise and transverse directions
from positive to negative and from negative to positive. The model is unable to
accurately predict the regions for the third PODmode, but is able to do so for the
fourth and fifth POD modes. This demonstrates that the model can learn more
complex features.

The model appears to struggle with certain POD modes, such as the sixth POD
mode shown in figure A.52. Here, the model appears incapable of predicting
similar characteristics to the true POD mode. Although this is likely due to the
highly complex features displayed in the true PODmode, as this PODmode does
not contain distinguishable symmetrical features unlike the previous PODmodes.
Moreover, it appears that regions with positive energies encompass the majority of
the true PODmode, whereas the model appears to attempt to impose some sort of
symmetry on the output.

As represented in figures A.53 to A.56, the model predictions appear to capture the
essence of the remaining POD modes, despite not predicting the features in the
correct locations. For instance, in the ninth PODmode depicted in figure A.55, the
model appears to predict the ’spotty’ nature of the true POD, and in the tenth POD
mode shown in figure A.56, the model appears to capture the ’strippy’ nature of the
PODmodes although the model is unable to predict where these features should be
located.
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We observe artefacts in the prediction in all POD modes, particularly near the
obstacle’s centre. This is most evident in A.54, where there is a notable artefact
in the predicted POD mode’s upper left corner. Notable mention is also made of
the model’s poor ability to predict the correct range of values. Considering the
color-map in figures 5.28 through A.56, the model is only capable of accurately
predicting the values for the first PODmode. For the remaining PODmodes, the
range of predicted POD mode values is either half or double the range of true POD
mode values. This is an area where the model’s predictions can be improved.

For array 33, the model performs poorly. For the first POD mode, as depicted in
figure 5.30, the model appears to understand that there are two regions of interest,
but it is unable to place these regions in the correct area or generate a similar
range of values as the true PODmode. This trend also extends to the second POD
mode, seen in figure 5.31. Here, the model seems to over-predict the correct range
of values sixfold and is not able to produce similar features seen in the true POD
mode.

Looking back at the second PODmodes for array 33 and array 332, figures 5.31 and
5.29 respectively, the model seems to think that the ideal prediction is something
similar to the first POD mode. As previously stated, it appears to have arrived at
this prediction after training on a dataset of second POD modes without access
to the dataset of first POD modes. This could suggest that the training dataset
does not contain sufficient amount of samples for the model to train on as the
’averaged’ image of these second PODmodes could be similar to the first PODmode.
Another possibility is that the model is too rigid to comprehend these distinctive
characteristics and attempts to predict a "safer" option and implies that the model
is underfitting for these predictions.

For the remaining PODmodes of array 33, seen in figures A.57 to A.64, the model
predictions more closely resemble noise than the actual PODmodes and contain
numerous artificial artefacts and, therefore, unsuited for the purpose of predic-
tion.

To provide a more intuitive examination of the model’s prediction performance, we
reconstruct the turbulent fluid flow for the two cases listed above. In addition, we
reconstruct the case with the smallest error while scaling the POD modes to match
the actual PODmode. This is done to see visually how the errors in predicting the
PODmodes can alter the fluid flow if it is used to reconstruct the velocity fields.

We assume that the time coefficient components of the PODmodes can be accu-
rately reproduced, and we determine the time coefficients used to reconstruct the
turbulent flow by utilising the simulation data and the true POD modes. Using
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the same time coefficients and the ML-predicted PODmodes, we reconstruct the
turbulent fluid flow. This video of the reconstructed turbulent fluid flow is uploaded
to YouTube for the reader’s pleasure. The link for the case with the lowest MRAE
is given in the footnotes2. Likewise, the link for the highest MRAE is given in the
footnotes3. Finally, the link for the reconstructed flow using the casewith the lowest
MRAE and rescaled PODmodes is given in the footnotes4.

We also attach snapshots of the reconstructed flowfield for offline readers in section
A.7 in the appendix. Figures A.73 to A.80 show the snapshots of the reconstructed
flow for array 33. Figures A.65 to A.72 show the snapshots for array 332, and figures
A.81 to A.88 show the snapshots for array 332 with rescaled PODmodes.

Each figure contains four images, the first of which depicts the actual turbulent fluid
flow that the LBM simulation was used to simulate. The second is the turbulent fluid
flow that was reconstructed by employing every true PODmode of the turbulent
flow. The third image shows the reconstructed fluid flow using the first 10 POD
modes, which we call as ’POD-10 flow’ for brevity. Finally, the last image represents
the reconstructed turbulent flow using the ML-predicted PODmodes, which we call
’ML-predicted flow’. We show the first image as a reference, and the second image
as a check to ensure the reconstruction method is correct. As we only take the first
10 POD modes, the third image is the ideal reconstructed fluid flow and the last
image is the actual flow the model predicts would happen using the ML-predicted
PODmodes.

We observe some encouraging developments for the ML-predicted flow for array
332. When we look at the POD-10 flow, we can observe that there are no apparent
coherent patterns and that the turbulent flow dynamics are random and chaotic.
Since each of the 1215 smaller POD modes contributes to a smaller scale structure,
it is not surprising that the POD-10 flow does not capture the small scale coherent
structures observed in the simulation, but it does show the large scale features of
the flowwell. TheML-predicted flow aims to predict the POD-10 flow, and it appears
that the large scale features can be reasonably predicted by the ML-predicted flow.
The regions where we anticipate a positive streamwise velocity and a negative
streamwise velocity are correctly highlighted by the ML-predicted flow, and the
ML-predicted flow can transition in time with the POD-10 flow. However, it appears
that the ML-predicted flow is unable to capture the correct range of velocities as
seen in the POD-10 flow and it is consistently off by a factor of two.

2Link for the reconstructed turbulent flow using the ML-predicted POD modes for the array with
lowest MRAE.
3Link for the reconstructed turbulent flow using the ML-predicted PODmodes for the array with the
highest MRAE.
4Link for the reconstructed turbulent flow using the rescaled ML-predicted POD modes for the array
with lowest MRAE.
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These encourage developments, however, are not observed for the ML-predicted
flow in array 33. Up until the transition appears to stop occurring, the Ml-predicted
flow appears to oscillate between positive and negative velocities. Additionally,
we observe significant noise in the prediction as well as enduring artefacts within
the domain with distinct artificial edges. This is also visible in array 332, though
less prominently than in the ML-predicted flow displayed here. This simulation
demonstrates that the ML-predicted flow is also inconsistently off by a factor of
two and does not capture the correct range of velocities.

Finally we analyse the reconstructed flow for the rescaled PODmodes for array 332.
By rescaling the ML-predicted PODmodes to match the actual POD modes, we try
to address the scaling issue and then use the rescaled PODmodes to reconstruct the
turbulent flow. Rescaling the PODmodes seem to have helped the ML-predicted
flowmatch the correct range of velocities as that of the POD-10 flow. Additionally,
this flow highlights some smaller features more clearly, improving on the previous
ML-predicted flow.

This subsectionwill be concludedby examining the effectiveness of theML-predicted
PODmodes using the reconstruction of the flow. We use the ML-predicted flow to
understand how significant the prediction errors are, and we find that for the array
with the smallest amount of error, it is able to reasonably be used to reconstruct
the turbulent fluid flow, assuming the time coefficients can be perfectly obtained.
Although in practise, predicting the time coefficients is another challenge.

5.4.3 Prediction discussion

This subsection discusses the CNN model’s predictions. We note above that the
histograms containing the MRAE for arrays with varying numbers of obstacles,
given in figures 5.22 and 5.23 reveals that the model predicts the flow of arrays
with fewer obstacles poorly.Examining the first POD mode, we observe that this
trend begins with the first obstacle and the MRAE decreases gradually until the
number of obstacles in an array reaches approximately 16, giving a void fraction of
64%. This accounts for approximately 983 samples out of a total of 1590, or 62% of
the dataset. For the purpose of reconstructing turbulent flow, it is ideal to have a
smaller amount of error for the first few modes, as these modes tend to represent
themajority of the large-scale features of the flow; therefore, the inability to predict
these PODmodes suggests that the reconstruction of the flow using these modes
will result in an inaccurate reconstruction. This implies that for the majority of
cases, we expect to see a poor to average quality reconstruction.
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Fig. 5.32.: The averaged POD mode across
the first PODmode.

Fig. 5.33.: The averaged POD mode across
the second PODmode.

For the remaining 38%, we intuitively visualise the flow around these arrays. We
anticipate that as the number of obstacles increases, the flow will tend toward the
flow around a single large bluff body. Consequently, this result may suggest that
38% of the remaining samples are comparable to this flow. To see if this is true,
we average all the PODmodes obtained from the simulations, which we show in
figures 5.32 to 5.33 and figures A.89 to A.96 in section A.8 in the appendix. We find
that the averaged PODmodes are very similar to those seen in array 332, in figures
5.28 to 5.29 and figures A.49 to A.56, which suggests the model has a preference for
predicting the flow for these arrays.

There are several potential causes to explain this. One reason is that the remaining
38% of simulations are the largest group with similar PODmodes, while arrays with
fewer obstacles have more diverse POD modes that the model cannot learn and
predict. Another reason is that the geometric SDF data could provide too few useful
data for the model to predict a wider range of POD modes, and instead is limited to
the POD mode close to the average POD mode. Lastly, the dataset may be too small
and unable to provide the model with sufficient data to understand the complex
flows for arrays with fewer obstacles.

5.5 Future work with SSIM

Concerning the model accuracy, there appear to be two matters of interest in
predicting fluid flow with the CNNmodel. The first is that the model has to predict
the correct likeness of the POD modes, and the other obstacle is predicting the
correct range of velocity values. As a potential future approach for this method, we
propose using the structural similarity indexmeasure (SSIM) to predict the likeness
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of the PODmodes. Proposed byWang et al. [62], the SSIM canmeasure the likeness
of two images. The SSIM is defined as

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2x + µ2y + C1)(σ2x + σ2y + C2)
, (5.6)

where x and y represent the two reference and sample images, µx and µy represents
the pixel sample mean of the image, σ2 represent the variance of the images, and
C1 and C2 are two variables to improve the numerical stability of the calculation.
C1 and C2 are calculated by (k1L2) and (k2L

2) where L is the dynamic range of the
pixels and k1 and k2 are constants with the values of 0.01 and 0.03 respectively.

We present the figure 5.34 image, which illustrates the application of the SSIM
measure and compares it to the MSE measure. The image in the upper left corner
is the original, error-free data. The following five images are distorted such that
the mean squared error (MSE) remains constant at 144. Simultaneously, the SSIM
measure is used to analyse the similarity of the original data, and as the images
progress, the SSIMmeasure decreases steadily. We observe that the images in the
upper middle and upper right are subjectively very similar to the original data and
therefore have a high SSIM score. Unlike the last two images, the distortions in the
bottom three images are significant and alter the likeness of the image, which is
indicated well by the decrease in the SSIM score.

Using the MSE metric to evaluate the similarity of the images would have yielded
identical values, even though the similarity between the images is vastly different.
There are two significant reasons why the SSIM measure is superior to the MSE for
quantifying a superior measure of similarity. First, the majority of error metrics,
such as the MSE, measure the difference in pixel values between a reference image
and a sample image. However, the human visual perceptual system does not do
this and can distinguish structural differences between a reference image and
an example image. The SSIMmeasure defines these structural differences as the
images’ luminosity, contrast, and structural similarity, and these measures are
defined to be the statistical moments of the reference and sample images.

The luminosity of the images is measured by comparing the mean of the images,
defined as,

l(x, y) =
2µxµy + C1

µ2x + µ2y + C1
. (5.7)
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The contrast is quantified as the standard deviation in the image, and we compare
the standard deviation of the images using,

c(x, y) =
2σxσy + C2

σ2x + σ2y + C2
. (5.8)

Finally, the structural similarity of the images are calculated by the covariance and
variance of the images, represented as,

s(x, y) =
σxy + C3

σxσy + C3
. (5.9)

The SSIMmeasure combines these measures into one singular measure,

SSIM = l(x, y) · c(x, y) · s(x, y), (5.10)

which is simplified into equation 5.6.

As discussed in subsection 5.4.2, the ML-predicted POD modes are occasionally
unable to predict the general similarity of the true PODmodes, and we hypothesise
that the SSIMmeasure can be used to compensate for this shortcoming. We hope
this serves as a convincing argument for using this metric to measure the similarity
between PODmodes compared to the MSE measure.
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Below, we train a CNNmodel with the same architecture used to predict the POD
modes but using the SSIM as a loss function and present the results below. These
results are preliminary as we have not altered the model architecture or training
method to improve these results.

Figures 5.35 to 5.36 and figures A.97 to A.104 in the appendix, shows the comparison
between these model using the MSE loss function and the SSIM loss function. For
brevity, we call the POD modes predicted by the SSIM loss function the ‘SSIM
pod modes’ and the PODmodes predicted by the MSE loss function ‘the MSE pod
modes’.

Generally, the SSIM pod modes look more similar to the true PODmodes than the
MSE pod modes for the first two PODmodes. Here, the SSIM pod modes seem to
be more smooth and more accurately capture the similarity of the true POD mode.
However, for the remaining 8 POD modes, the MSE PODmodes seemmore similar
to the true PODmodes.

Comparing the accuracy of the SSIM pod modes to the MSE pod modes, we attach
figures 5.37 to 5.38 and figures A.105 to A.112. Here, we find that the SSIM podmodes
are generally less accurate than the MSE pod modes. The SSIM pod modes have a
higher median error and a higher variance, with a long tail extending outwards,
suggesting that certain predictions are very poor. Despite that, this method could
be potentially useful if the model architecture and hyperparameters are tuned
properly. The idea behind using the SSIM loss function is that we aim to predict the
correct likeness and then compensate by separately predicting the eigenvalues of
the PODmodes. Although it is a more complicated approach overall, it splits the
problem down into two aspects which can be tackled individually,
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6Conclusion

„We are just an advanced breed of monkeys on a
minor planet of a very average star. But we can
understand the Universe. That makes us
something very special

— Stephen Hawking

We conclude this thesis by reviewing the initial research questions that we posed.
We wished to understand the nature of turbulent flows though complex obstacles,
and wanted to understand the relationship between the geometric information of
the obstacles, and the turbulent flow going through it. The flow past a bluff body is a
well-studied problem, whereas the flow through or past multiple obstacles remains
a vastly more complex problem due to the number of possible geometric configu-
rations that an array of obstacles may assume. The size, shape, and placement of
each obstacle within an obstacle can vary, which influences the flow around it.

This naturally leads to the use of simulations to evaluate how different geometric
configurations affect flow, but we would require many simulations with many
different arrays to begin to build a picture of this occurs. Due to the magnitude of
processing the data generated by these simulations, it is natural to employ ‘big data’
techniques such as machine learning to process these data.

We therefore devise a method for predicting turbulent flow solely based on the
array’s geometric data, while keeping boundary conditions constant. Due to the
transient nature of turbulent flow, we had two distinct methods for predicting
turbulent flow, the first of which was to use a recurrent neural network (RNNs)
to predict the flow. Training RNNs is extremely challenging and computationally
expensive. Instead, we were inspired by the method employed by Guo et al. [22],
who predicted the steady flow around bluff bodies using convolutional neural
networks (CNNs), and modified their method such that CNNs will predict a reduced
order form, the PODmodes, of the turbulent fluid flow. The goal is for the predicted
PODmodes to reveal information about the nature of turbulent flows, so that we
can investigate how these arrays affect the flow.
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The POD method decomposes the flow into two distinct terms, the spatial term
and the temporal term. We intend to first predict the spatial term and disregard
the temporal term for the time being. This is because it could be argued that the
geometric information from the arrays could have a distinct relationship with the
spatial term from the POD, such that the CNNmodel could derive a link between
them, whereas this argument is weaker for the temporal term and the geometric
information from the arrays. We hope that the temporal term could be predicted
by other teams, and therefore could provide the last link towards reconstructing
turbulent flows.

Using the LBM, we simulate thousands of 2D flows past random arrays within a
five-by-five square grid to generate our dataset. The PODmodes are then calculated
from the dataset and used as the training and validation set for the CNN model,
along with the geometric information of the arrays. After trial and error, we settle
on a model architecture based on the mean squared error loss function, which
shows some promising predictions but is unable to generalise across all the array
types used, particularly arrays with fewer obstacles.

We do find that the predicted PODmodes are accurate enough to be used to recon-
struct turbulent flows that captures the essence of the large-scale features of the
flow, assuming that the time coefficients used are ideal. This represents a first step
towards using deep learning methods to understand how the geometric arrange-
ments of obstacles alter turbulent flows. Although the model is not good enough to
generalise across all the different arrays, there are many different reasons for this
which could be tackled to improve the generalisation of the model.

One potential method is the use of the structural similarity index measure (SSIM)
as a loss function for the model. The concept presented here is that there are
two aspects to predicting the PODmodes: the first is the prediction of the image’s
‘similarity’ and the second is accurately determining the correct range of values that
these predictions should encompass. The use of the SSIM loss function appears
promising as it is designed to be used to predict the similarity of different images,
and therefore could be used to predict the similarity of the PODmodes. Using the
fact that the L2 norm of the PODmodes is the eigenvalue of the PODmode, a second
model to predict the eigenvalues of the POD modes would be more effective than a
model that attempts to predict both indirectly.

This approach is highly dependent on the determination of the time coefficients
for the reconstruction of turbulent flow, a problem that has not been addressed in
this work and must be addressed if we wish to reconstruct turbulent flow using the
PODmethod.
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To conclude this work, we hope that a first step has been taken toward comprehend-
ing the nature of turbulence and, hopefully, toward creating methods of predicting
turbulent flows rapidly. There are numerous important applications that neces-
sitate the evaluation of computationally intensive simulations, and we hope that
a simple tool could be created that can be used to solve many of these problems
quickly and effectively.
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AAdditional figures

„An image is worth a thousand words.

—

A.1 Calculated POD mode example, for POD
modes from three to ten

Fig. A.1.: Third POD mode of the simu-
lated flow through an array of ob-
stacles seen in figure 5.7.

Fig. A.2.: Fourth POD mode of the simu-
lated flow through an array of ob-
stacles seen in figure 5.7.

Fig. A.3.: Fifth PODmode of the simulated
flow through an array of obsta-
cles seen in figure 5.7.

Fig. A.4.: Sixth PODmode of the simulated
flow through an array of obsta-
cles seen in figure 5.7.

93



Fig. A.5.: Seventh PODmode of the simu-
lated flow through an array of ob-
stacles seen in figure 5.7.

Fig. A.6.: Eighth POD mode of the simu-
lated flow through an array of ob-
stacles seen in figure 5.7.

Fig. A.7.: Ninth POD mode of the simu-
lated flow through an array of ob-
stacles seen in figure 5.7.

Fig. A.8.: Tenth POD mode of the simu-
lated flow through an array of ob-
stacles seen in figure 5.7.
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A.2 Epoch Training graphs for POD modes 3 to
10

A.2.1 Full Epoch training graphs

Fig. A.9.: Epoch loss graph for POD
mode 3

Fig. A.10.: Epoch loss graph for POD
mode 4

Fig. A.11.: Epoch loss graph for POD
mode 5

Fig. A.12.: Epoch loss graph for POD
mode 6

Fig. A.13.: Epoch loss graph for POD
mode 7

Fig. A.14.: Epoch loss graph for POD
mode 8
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Fig. A.15.: Epoch loss graph for POD
mode 9

Fig. A.16.: Epoch loss graph for POD
mode 10
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A.2.2 Cropped Epoch training graphs

Fig. A.17.: Cropped epoch loss graph
for PODmode 3

Fig. A.18.: Cropped epoch loss graph
for PODmode 4

Fig. A.19.: Cropped epoch loss graph
for PODmode 5

Fig. A.20.: Cropped epoch loss graph
for PODmode 6

Fig. A.21.: Cropped epoch loss graph
for PODmode 7

Fig. A.22.: Cropped epoch loss graph
for PODmode 8
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Fig. A.23.: Cropped epoch loss graph
for PODmode 9

Fig. A.24.: Cropped epoch loss graph
for PODmode 10
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A.3 Model error histograms for POD modes 3 to
10
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A.4 Error distribution compared against obstacle
number plots for POD modes 3 to 10

Fig. A.33.: A histogram showing the error distribution against the number of obstacles in
the array for the third PODmode.
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Fig. A.34.: A histogram showing the error distribution against the number of obstacles in
the array for the fourth PODmode.

Fig. A.35.: A histogram showing the error distribution against the number of obstacles in
the array for the fifth PODmode.
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Fig. A.36.: A histogram showing the distribution of error against the number of obstacles
in the array for the sixth PODmode.

Fig. A.37.: A histogram showing the distribution of error against the number of obstacles
in the array for the seventh PODmode.
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Fig. A.38.: A histogram showing the distribution of error against the number of obstacles
in the array for the eighth PODmode.

Fig. A.39.: A histogram showing the distribution of error against the number of obstacles
in the array for the ninth PODmode.
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Fig. A.40.: A histogram showing the distribution of error against the number of obstacles
in the array for the tenth PODmode.
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A.5 Best POD mode predictions

Fig. A.41.: Best ML-predicted PODmode for PODmode 3.

Fig. A.42.: Best ML-predicted PODmode for PODmode 4.

Fig. A.43.: Best ML-predicted PODmode for PODmode 5.

113



Fig. A.44.: Best ML-predicted PODmode for PODmode 6.

Fig. A.45.: Best ML-predicted PODmode for PODmode 7.

Fig. A.46.: Best ML-predicted PODmode for PODmode 8.

Fig. A.47.: Best ML-predicted PODmode for PODmode 9.
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Fig. A.48.: Best ML-predicted PODmode for PODmode 10.
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A.6 POD mode comparison

A.6.1 Case 332

Fig. A.49.: PODmode 3 comparison for array 332.

Fig. A.50.: PODmode 4 comparison for array 332.

Fig. A.51.: PODmode 5 comparison for array 332.
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Fig. A.52.: PODmode 6 comparison for array 332.

Fig. A.53.: PODmode 7 comparison for array 332.

Fig. A.54.: PODmode 8 comparison for array 332.

Fig. A.55.: PODmode 9 comparison for array 332.
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Fig. A.56.: PODmode 10 comparison for array 332.
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A.6.2 Case 33

Fig. A.57.: PODmode 3 comparison for array 33.

Fig. A.58.: PODmode 4 comparison for array 33.

Fig. A.59.: PODmode 5 comparison for array 33.

119



Fig. A.60.: PODmode 6 comparison for array 33.

Fig. A.61.: PODmode 7 comparison for array 33.

Fig. A.62.: PODmode 8 comparison for array 33.

Fig. A.63.: PODmode 9 comparison for array 33.
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Fig. A.64.: PODmode 10 comparison for array 33.
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A.7 Reconstruction snapshots

A.7.1 Case 332

A.7.2 Case 33

A.7.3 Case 332 with rescaled POD modes
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Fig. A.65.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 1 for case 332.

Fig. A.66.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 21 for case 332.

Fig. A.67.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 41 for case 332.

Fig. A.68.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 61 for case 332.
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Fig. A.69.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 81 for case 332.

Fig. A.70.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 101 for case 332.

Fig. A.71.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 121 for case 332.

Fig. A.72.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 141 for case 332.
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Fig. A.73.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 1 for case 33.

Fig. A.74.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 21 for case 33.

Fig. A.75.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 41 for case 33.

Fig. A.76.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 61 for case 33.
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Fig. A.77.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 81 for case 33.

Fig. A.78.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 101 for case 33.

Fig. A.79.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 121 for case 33.

Fig. A.80.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 141 for case 33.
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Fig. A.81.: An instantaneous snapshot of the turbulent fluid flow at timestep 1 for array
332. The ML-predicted POD modes are rescaled to match the true POD modes.

Fig. A.82.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 21.

Fig. A.83.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 41.

Fig. A.84.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 61.
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Fig. A.85.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 81.

Fig. A.86.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 101.

Fig. A.87.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 121.

Fig. A.88.: An instantaneous snapshot of the reconstructed turbulent fluid flows at
timestep 141.
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Fig. A.89.: The averaged PODmode across
the third PODmode.

Fig. A.90.: The averaged PODmode across
the fourth PODmode.

Fig. A.91.: The averaged PODmode across
the fifth PODmode.

Fig. A.92.: The averaged PODmode across
the sixth PODmode.

A.8 Averaged POD modes

Fig. A.93.: The averaged PODmode across
the seventh PODmode.

Fig. A.94.: The averaged PODmode across
the eighth PODmode.
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Fig. A.95.: The averaged PODmode across
the ninth PODmode.

Fig. A.96.: The averaged PODmode across
the tenth PODmode.
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A.9 SSIM

A.9.1 SSIM comparison figures
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A.9.2 SSIM histogram error
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